
Version 1.5 – Sep. 23, 2001

Writing ImageJ PlugIns – A Tutorial 1

Writing ImageJ PlugIns – A Tutorial

Werner Bailer
i j t u t o r i a l @ f h s - h a g e n b e r g . a c . a t

Fachhochschule Hagenberg, Austria
Medientechnik und -design

1 Getting Started

1.1 About ImageJ1

ImageJ is a public domain Java image processing program inspired by NIH Image for the Macintosh. It
runs, either as an online applet or as a downloadable application, on any computer with a Java 1.1 or later
virtual machine.

It can display, edit, analyze, process, save and print 8-bit, 16-bit and 32-bit images. It can read many image
formats including TIFF, GIF, JPEG, BMP, DICOM, FITS and “raw”. It supports “stacks”, a series of
images that share a single window.

It is multithreaded, so time-consuming operations such as image file reading can be performed in parallel
with other operations.

It can calculate area and pixel value statistics of user-defined selections. It can measure distances and an-
gles. It can create density histograms and line profile plots. It supports standard image processing func-
tions such as contrast manipulation, sharpening, smoothing, edge detection and median filtering.

It does geometric transformations such as scaling, rotation and flips. Image can be zoomed up to 32:1 and
down to 1:32. All analysis and processing functions are available at any magnification factor. The program
supports any number of windows (images) simultaneously, limited only by available memory.

Spatial calibration is available to provide real world dimensional measurements in units such as millime-
ters. Density or gray scale calibration is also available.

ImageJ was designed with an open architecture that provides extensibili ty via Java plugins. Custom acqui-
sition, analysis and processing plugins can be developed using ImageJ's built in editor and Java compiler.
User-written plugins make it possible to solve almost any image processing or analysis problem.

ImageJ is being developed using Metrowerks CodeWarrior, and the source code is freely available. The
author, Wayne Rasband (wayne@codon.nih.gov), is at the Research Services Branch, National Institute of
Mental Health, Bethesda, Maryland, USA.

1.2 About this Tutorial

This tutorial is an introduction to writing plugins for ImageJ. It explains the concept of plugins in ImageJ,
starting with the sample plugins that are part of the ImageJ distribution, and covers those parts of the
ImageJ API, that are essential for writing plugins. A reference of the most important classes, methods and
constants is provided and some advanced topics are discussed.

1 Description taken from h t t p : / / r s b . i n f o . n i h . g o v / i j / d o c s / i n t r o . h t m l

Version 1.5 – Sep. 23, 2001

Writing ImageJ PlugIns – A Tutorial 2

A basic knowledge of the Java programming language is required. (Resources for Java beginners can be
found in section 10.4). You should also try to get familiar with ImageJ before you start writing plugins.

For the development of plugins you need ImageJ and a Java compiler. You can write your plugins using
ImageJ’s built-in editor or any other text editor or Java IDE (Integrated Development Environment). You
can compile them using a Java compiler of your choice or inside ImageJ.

1.3 Setting up your Environment

For running ImageJ you need a the ImageJ class and configuration files, a Java Runtime Environment
(JRE) and – for compiling your own plugins – a Java compiler with the required libraries, as for example
included in the Java 2 SDK Standard Edition (J2SE) from Sun Microsystems. Depending on the ImageJ
distribution you are using, some or all of this may be included.

1.3.1 Installing ImageJ

The latest distribution of ImageJ can be downloaded from

h t t p : / / r s b . i n f o . n i h . g o v / i j / d o w n l o a d . h t m l

In the following the installation of ImageJ will be described for different operating systems. More detailed
and up-to-date installation instructions can be found at

h t t p : / / r s b . i n f o . n i h . g o v / i j / d o c s / i n s t a l l

If you already have a JRE (and a Java compiler) installed on your computer and you are familiar with Java,
you just need to download the ImageJ class and configuration files which are available as ZIP archive. To
run ImageJ, add i j . j a r to your classpath and execute class i j . I m a g e J. This works also for all operat-
ing systems for which there is no specific distribution but for which a Java runtime environment is avail-
able.

Windows

The Windows version is available as self-extracting ZIP archive which includes a Java Runtime Environ-
ment (JRE) and a Java compiler. To install it, run the self-extracting file you have downloaded. In the
destination directory you will find an ImageJ shortcut. Double-click this it to run ImageJ.

Note: The "ImageJ" shortcut assumes the ImageJ folder is C:\ImageJ. If this is not the case, right-click
on the shortcut and edit the "Target:" and "Start in" fi elds of the "Shortcut" properties to reflect the new
location. For example, if the ImageJ folder is located in the C:\Program Files folder, change these fields to

" C : \ P r o g r a m f i l e s \ I m a g e J \ j r e \ b i n \ j r e w . e x e " - m x 8 0 m – c p
i j . j a r ; t o o l s 1 1 . j a r i j . I m a g e J

and

C : \ P r o g r a m F i l e s \ I m a g e J

MacOS

To run ImageJ on MacOS you need the MacOS Runtime for Java (MRJ). It can be downloaded from
h t t p : / / w w w . a p p l e . c o m / j a v a. Installation instructions can be found on the download page.

The ImageJ distribution is a self-extracting archive (If it does not expand automatically after downloading,
use StuffIt Expander). Double-click the ImageJ icon in the newly created folder to run it.

Mac OS X

Download the t a r . g z file and double-click it to expand. Double-click the ImageJ icon to run ImageJ.
Note: There are still performance problems with the Mac OS X Java runtime environment.

Version 1.5 – Sep. 23, 2001

Writing ImageJ PlugIns – A Tutorial 3

Linux x86

Download the Linux x86 t a r . g z file, which contains IBM’s Java Runtime Environment, and extract it
using e.g.

t a r x v z f i j 1 2 3 - x 8 6 . t a r . g z

and execute the r u n script in the ImageJ directory.

1.3.2 Installing the Java Compiler

Installing a Java compiler is only necessary if it is not included in the ImageJ distribution or provided by
the operating system. In any case, also if you are using an operating system which is not mentioned here
but for which a Java compiler is available, you can use any Java compiler of your choice to compile your
plugins (e.g. J2SE SDK form Sun Microsystems, downloadable at h t t p : / / w w w . j a v a s o f t . c o m).

Details on compiling plugins can be found in section 3.6.

Windows

The ImageJ distribution for Windows includes a Java compiler which allows you to compile plugins from
inside ImageJ.

MacOS

In addition to the MRJ you need the MRJ SDK. It can be downloaded from
h t t p : / / d e v e l o p e r . a p p l e . c o m / j a v a. Run the installer you have downloaded. After the installation
it is possible to compile plugins inside ImageJ.

Linux

The ImageJ distribution for Linux includes a Java compiler which allows you to compile plugins from
inside ImageJ.

1.4 Updating ImageJ

You can update ImageJ by replacing the ImageJ JAR file (i j . j a r). The latest version is available at
h t t p : / / r s b . i n f o . n i h . g o v / i j / u p g r a d e / i n d e x . h t m l. Just replace your existing ij.jar file with
the one you downlaoded. The i j . j a r file can be found directly in your ImageJ folder. Under Mac OS X,
it can be found in I m a g e J . a p p / C o n t e n t s / R e s o u r c e s / J a va where I m a g e J . a p p is the directory
that Finder displays as the ImageJ application.

Note: The ImageJ JAR file also contains the configuration file I J P r o p s . t x t. If you want to save your
settings, extract the file from your old i j . j a r and replace it in the new one. You can edit JAR files with
most ZIP utilities (e.g. WinZip).

Version 1.5 – Sep. 23, 2001

Writing ImageJ PlugIns – A Tutorial 4

2 ImageJ Class Structure
This is an overview of the class structure of ImageJ. It is by far not complete, just the most important for
plugin programming are listed and briefly described. Detailed descriptions of classes and methods can be
found in the chapters 3 through 6.

i j

I m a g e J A p p l e t

ImageJ can be run as applet or as application. This is the applet class of ImageJ.
The advantage of running ImageJ as applet is that it can be run (remotely) inside a
browser, the biggest disadvantages is the limited access to files on disk because of
the Java applet security concept.

I m a g e J

The main class of the ImageJ application. This class contains the run method
which is the program’s main entry point and the ImageJ main window.

E x e c u t e r

A class for executing menu commands in separate threads (without blocking the
rest of the program).

C o n v e r t e r

Implements a method for conveniently converting an ImagePlus from one type to
another (see section 5.8)

I J

A class containing many utility methods (discussed in section 5).

I m a g e P l u s

The representation of an image in ImageJ, which is based on an ImageProcessor
(see section 4).

I m a g e S t a c k

An ImageStack is an expandable array of images (see section 4).

W i n d o w M a n a g e r

This class manages the list of open windows.

i j . g u i

P r o g r e s s B a r

A bar in the ImageJ main window that informs graphically about the progress of a
running operation.

G e n e r i c D i a l o g

A modal dialog that can be customized and called on the fly, e.g. for getting user
input before running a plugin (see section 6).

N e w I m a g e

A class for creating a new image of a certain type from scratch.

R o i

A class representing a region of interest of an image. If supported by a plugin, it
can process just the ROI and not the whole image.

Version 1.5 – Sep. 23, 2001

Writing ImageJ PlugIns – A Tutorial 5

I m a g e C a n v a s

A canvas derived from j a v a . a w t . C a n v a s on which an image is painted (see
section 6.5)

I m a g e W i n d o w

A frame derived from j a v a . a w t . F r a m e that displays an image (see section 6.4).

S t a c k W i n d o w

An ImageWindow designed for displaying stacks (see section 6.6).

H i s t o g r a m W i n d o w

An ImageWindow designed for displaying histograms (see section 6.6).

P l o t W i n d o w

An ImageWindow designed for displaying plots (see section 6.6).

i j . i o

This package contains classes for reading/decoding and writing/encoding image
files.

i j . m e a s u r e

Contains classes for measurements.

i j . p l u g i n

Most ImageJ menu commands are implemented as plugins and can therefore be
found in the classes of i j . p l u g i n and it’s subpackages.

P l u g I n

This interface has to be implemented by plugins, that do not require an image as
input (see section 3).

i j . p l u g i n . f i l t e r

P l u g I n F i l t e r

This interface has to be implemented by plugins, that require an image as
input (see section 3).

i j . p l u g i n . f r a m e

P l u g I n F r a m e

A window class that can be subclassed by a plugin (see section 3).

i j . p r o c e s s

I m a g e C o n v e r t e r

A class that contains methods for converting images from one image type to an-
other.

I m a g e P r o c e s s o r

An abstract superclass of image processors for certain image types. An image
processor provides methods for actually working on the image (see chapter 4).

S t a c k C o n v e r t e r

A class for converting stacks form one image type to another.

S t a c k P r o c e s s o r

A class for processing image stacks.

Version 1.5 – Sep. 23, 2001

Writing ImageJ PlugIns – A Tutorial 6

i j . t e x t

This package contains classes for displaying and editing text.

Version 1.5 – Sep. 23, 2001

Writing ImageJ PlugIns – A Tutorial 7

3 The PlugIn Concept of ImageJ
The functions provided by ImageJ’s menu commands (most of them are in fact plugins themselves) can
be extended by user plugins. These plugins are Java classes implementing the necessary interfaces that are
placed in a certain folder. Plugins can be written with ImageJ’s built-in plugin editor (accessible via the
menus Plugins/New... and /Edit...), with a text editor of your choice or they can be generated using Im-
ageJ’s plugin recorder. In any case plugins can be compiled and run inside ImageJ. Plugins found by Im-
ageJ are placed in the Plugins menu or (since version 1.20) in submenus of it.

3.1 Types of PlugIns

There are basically two types of plugins: those that do not require an image as input (implementing the
interface P l u g I n) and plugin filters, that require an image as input (implementing the interface P l u g I n -
F i l t e r).

3.2 Interfaces

PlugIn

This interface has just one method:

v o i d r u n (j a v a . l a n g . S t r i n g a r g)

This method runs the plugin, what you implement here is what the plugin actually does. a r g is a string
passed as an argument to the plugin, and it also be an empty string. You can install plugins more than
once, so each of them will call the same plugin class with a different argument.

PlugInFilter

This interface also has a method

v o i d r u n (I m a g e P r o c e s s o r i p)

This method runs the plugin, what you implement here is what the plugin actually does. It takes the image
processor it works on as an argument. The processor can be modified directly or a new processor and a
new image can be based on its data, so that the original image is left unchanged. The original image is
locked while the plugin is running. In contrast to the P l u g I n interface the run method does not take a
string argument – the argument can be passed using

i n t s e t u p (j a v a . l a n g . S t r i n g a r g , I m a g e P l u s i m p)

This method sets up the plugin filter for use. The a r g string has the same function as in the run method
of the P l u g I n interface. You do not have to care for the argument i m p – this is handled by ImageJ and
the currently active image is passed. The s e t u p method returns a flag word that represents the filter’s
capabilities (i.e. which types of images it can handle). The following capability flags are defined in
P l u g I n F i l t e r :

s t a t i c i n t D O E S _ 1 6

The plugin filter handles 16 bit grayscale images.

s t a t i c i n t D O E S _ 3 2

The plugin filter handles 32 bit floating point grayscale images.

s t a t i c i n t D O E S _ 8 C

The plugin filter handles 8 bit color images.

Version 1.5 – Sep. 23, 2001

Writing ImageJ PlugIns – A Tutorial 8

s t a t i c i n t D O E S _ 8 G

The plugin filter handles 8 bit grayscale images.

s t a t i c i n t D O E S _ A L L

The plugin filter handles all types of images.

s t a t i c i n t D O E S _ R G B

The plugin filter handles RGB images.

s t a t i c i n t D O E S _ S T A C K S

The plugin filter supports stacks, ImageJ will call it for each slice in a stack.

s t a t i c i n t D O N E

If the s e t u p method returns DONE the run method will not be called.

s t a t i c i n t N O _ C H A N G E S

The plugin filter does not change the pixel data.

s t a t i c i n t N O _ I M A G E _ R E Q U I R E D

The plugin filter does not require an image to be open.

s t a t i c i n t N O _ U N D O

The plugin filter does not require undo.

s t a t i c i n t R O I _ R E Q U I R E D

The plugin filter requires a region of interest (ROI).

S t a t i c i n t S T A C K _ R E Q U I R E D

The plugin filter requires a stack.

s t a t i c i n t S U P P O R T S _ M A S K I N G

Plugin filters always work on the bounding rectangle of the ROI. If this flag is set
and there is a non-rectangular ROI, ImageJ will restore the pixels that are inside
the bounding rectangle but outside the ROI.

3.3 Plugins Folder – Installing Plugins

ImageJ user plugins have to be located in a folder called p l u g i n s which is a subfolder of the ImageJ
folder. But only class files in the plugins folder with at least one underscore in their name appear auto-
matically in the plugins menu. Since version 1.20 it is also possible to create subfolders of the plugins
folder and place plugin files there. The subfolders are displayed as submenus of ImageJ’s plugins menu.

To install a plugin (e.g. one you have from the ImageJ plugins page) copy the . c l a s s file into the plugins
folder or one of its subfolders. The plugin will appear in the plugin menu (or one of its submenus) the
next time you start ImageJ. You can add it to a menu and assign a shortcut to using the “Plugins/ Short-
cut/ Install plugin...” menu. In this case, the plugin will appear in the menu without restarting ImageJ.

Alternatively, if you have the source code of a plugin, you can compile and run it form within ImageJ.
More about compiling and running plugins can be found in section 3.6.

Since ImageJ 1.24 you can specify the plugins directory using the p l u g i n s . d i r property, e.g. under
Linux using

. / j r e / b i n / j r e - m x 8 0 m - c p i j . j a r : t o o l s . j a r - D p l u g i n s . d i r = / h o m e / w a y n e
i j . I m a g e J

Version 1.5 – Sep. 23, 2001

Writing ImageJ PlugIns – A Tutorial 9

3.4 A Sample PlugIn (Example)

If you look into the p l u g i n s folder right after installing ImageJ you will find the sample plugins that
come with ImageJ. In this section we will take a closer look at one of them.

I n v e r t e r _ is a plugin that inverts 8 bit grayscale images.

Here we import the necessary packages, i j . * for the basic ImageJ classes, i j . p r o c e s s . * for image
processors and the interface i j . p l u g i n . f i l t e r . P l u g I n F i l t e r is the interface we have to imple-
ment for a plugin filter.

i m p o r t i j . * ;
i m p o r t i j . p l u g i n . f i l t e r . P l u g I n F i l t e r ;
i m p o r t i j . p r o c e s s . * ;
i m p o r t j a v a . a w t . * ;

NOTE: Do not use a p a c k a g e statement inside plugin classes – they have to be in the default package!

Our plugin has the necessary underscore appended. It needs an image as input, so it has to implement
P l u g I n F i l t e r :

p u b l i c c l a s s I n v e r t e r _ i m p l e m e n t s P l u g I n F i l t e r {
. . .

What comes next is the method for setting up the plugin. For the case that we get “about” as argument,
we call the method s h o w A b o u t that displays an about dialog. In that case we return D O N E because we
do not want the r u n method to be called. In any other case we return the capability flags for this plugin:
It works on 8 bit grayscale images, also on stacks and in the case that there is a ROI defined the plugin
will just work on the masked region (region of interest, ROI).

p u b l i c i n t s e t u p (S t r i n g a r g , I m a g e P l u s i m p) {
i f (a r g . e q u a l s (" a b o u t "))

{ s h o w A b o u t () ; r e t u r n D O N E ; }
r e t u r n D O E S _ 8 G + D O E S _ S T A C K S + S U P P O R T S _ M A S K I N G ;

}

The r u n method implements the actual function of the plugin. We get the processor of the original im-
age. Then we get the image as an array of pixels from the processor – as it is a 8 bit grayscale image (= 256
possible values) we can use a b y t e array. Note that the pixel array is one-dimensional, containing one
scan line after the other. Then we read the width of the image (because we need to know the length of a
scan line) and the bounding rectangle of the ROI.

p u b l i c v o i d r u n (I m a g e P r o c e s s o r i p) {
b y t e [] p i x e l s = (b y t e []) i p . g e t P i x e l s () ;
i n t w i d t h = i p . g e t W i d t h () ;
R e c t a n g l e r = i p . g e t R o i () ;

We now declare two variables to avoid calculating the position in the one dimensional image array every
time. In the outer loop we go from the first line of the ROI to its last line. We calculate the offset (= posi-
tion of the first pixel of the current scan line) and go in the inner loop from the left most pixel of the ROI
to its right most pixel. We assign the current position to i and invert the pixel value by subtracting it’s
value from 255.

i n t o f f s e t , i ;

f o r (i n t y = r . y ; y < (r . y + r . h e i g h t) ; y + +) {
o f f s e t = y * w i d t h ;
f o r (i n t x = r . x ; x < (r . x + r . w i d t h) ; x + +) {

i = o f f s e t + x ;
p i x e l s [i] = (b y t e) (2 5 5 - p i x e l s [i]) ;

}
}

Version 1.5 – Sep. 23, 2001

Writing ImageJ PlugIns – A Tutorial 10

s h o w A b o u t uses the static method s h o w M e s s a g e from class I J to display a text in a message box. The
first parameter specifies its title, the second the message text.

v o i d s h o w A b o u t () {
I J . s h o w M e s s a g e (" A b o u t I n v e r t e r _ . . . " ,
" T h i s s a m p l e p l u g i n f i l t e r i n v e r t s 8 - b i t i m a g e s . L o o k \ n " +
" a t t h e ' I n v e r t e r _ . j a v a ' s o u r c e f i l e t o s e e h o w e a s y i t i s \ n " +
" i n I m a g e J t o p r o c e s s n o n - r e c t a n g u l a r R O I s , t o p r o c e s s \ n " +
" a l l t h e s l i c e s i n a s t a c k , a n d t o d i s p l a y a n A b o u t b o x . "
) ;

}

3.5 Recording Plugins

If your plugin’s function can be done as a sequence of ImageJ menu commands, you do not have to write
your plugin, you can simply record it. Plugins/Record... opens a window and records your actions (menu
commands, regions of interest, etc.) as long as the “Record” checkbox is checked. The pseudocode of this
operations will be displayed in the window. The “Create Plugin” button generates a Java class from this
pseudocode using the utility methods from class IJ (discussed in section 5). The plugin class will be
opened in the built in editor form where you can also compile and run it. You may want to take such a
generated plugin code as a basis for writing more complex plugins.

3.6 Compiling and Running PlugIns

Now that we have looked at one of the sample plugins we want to compile and run it.

If the Java runtime environment you are using includes a Java compiler (e.g. as in the ImageJ distribution
for Windows) or your operating system provides the Java compiler you can compile and run plugins inside
ImageJ. There are basically two ways:

�� Using the menu Plugins/Compile and run..., which opens a file dialog which lets you select a . j a v a
file which will be compiled into a class file and executed as plugin.

�� Using File/Compile and run ... in the built-in plugin editor which will compile and run the code in the
editor window.

If your plugin requires other libraries than ImageJ and the standard Java libraries, you have to modify the
classpath of your Java environment in order to have these libraries available when compiling and running
plugins. Here is how to modify the classpath:
Windows: Edit the classpath option in the "Target:" field of the of the "Shortcut" properties of the Im-

ageJ shortcut. The entries are separated by semicolons. For example, to use m y l i b . j a r , change the
"Target" line to
C : \ I m a g e J \ j r e \ b i n \ j r e w . e x e – m x 8 0 m - c l a s s p a t h i j . j a r ; t o o l s 1 1 . j a r ;m y l i b . j a r
i j . I m a g e J

Mac OS X: To make more than 80MB of memory available to ImageJ, edit the c l a s s p a t h property in
the I m a g e J . a p p / C o n t e n t s / R e s o u rc e s / M R J A p p . p r o p e r t i e s text file, where I m a g e J . a p p is
the directory (bundle) that the Finder displays as the ImageJ application.

Linux, Unix, other OS: You can modify the classpath by using the – c p switch followed by the libraries
to be used. For example, to use m y l i b . j a r , call the JVM using:
. / j r e / b i n / j r e – m x 8 0 m - c p i j . j a r : t o o l s . j a r :m y l i b . j a r i j . I m a g e J
If you want to use this setting all the time, make the modification in the run script.

If your Java environment does not contain a Java compiler you can compile plugins on the command line
(or using a batch file or shell script respectively) under Windows, Linux and Mac OS X. The syntax for
calling the Java compiler is

j a v a c – c p i j . j a r ; t o o l s . j a r . \ p l u g i n s \ M y P l u g i n _ . j a v a under Windows and
j a v a c – c p i j . j a r : t o o l s . j a r . / p l u g i n s / M y P l u g i n _ . j a v a under Linux.

Version 1.5 – Sep. 23, 2001

Writing ImageJ PlugIns – A Tutorial 11

3.7 Integrating PlugIns into the ImageJ GUI

Like commands plugins can be accessed via hot-keys. You can create a new hot-key by selecting ”Create
Shortcut” from the menu ”Plugins / Shortcuts”.

When we discussed the plugin interfaces we talked about arguments that can be passed to plugins. In-
stalling a plugin using the menu command “Plugins / Shortcuts / Install Plugin ...” places the plugin into a
selected menu, assigns a hot-key and passes an argument.

Plugins / Shortcuts / Remove ... removes a plugin from the menu.

Version 1.5 – Sep. 23, 2001

Writing ImageJ PlugIns – A Tutorial 12

4 Image Representation in ImageJ
When we looked at the sample plugin in the previous section we saw that images are represented by Im-
agePlus and ImageProcessor objects in ImageJ. In this section we take a closer look at the way images are
handled by ImageJ. Methods that are not discussed in the text but are of some importance for writing
plugins can be found in the reference in section 4.11.

4.1 Types of Images

Images are large arrays of pixel values. But it is important to know how these pixel values should be inter-
preted. This is specified by the type of the image. ImageJ knows five image types:

�� 8 bit grayscale image: can display 256 grayscales, a pixel is represented by a b y t e

�� 8 bit color image: can display 256 colors that are specified in a lookup table (LUT), a pixel is repre-
sented by a b y t e

�� 16 bit grayscale image: can display 65.536 grayscales, a pixel is represented by a s h o r t

�� RGB color image: can display 256 values per channel, a pixel is represented by an i n t

�� 32 bit image: floating point grayscale image, a pixel is represented by a f l o a t

4.2 Images

An ImagePlus is an object that represents an image. It is based on an ImageProcessor, a class that holds
the pixel array and does the actual work on the image. The type of the ImageProcessor used depends on
the type of the image. The image types are represented by constants in ImagePlus:

C O L O R _ 2 5 6

A 8 bit color image with a look-up table.

COLOR_RGB

A RGB color image.

G R A Y 1 6

A 16 bit grayscale image.

G R A Y 3 2

A 32 bit floating point grayscale image.

GRAY8

A 8 bit grayscale image.

ImageJ displays images using a class called ImageWindow. It handles repainting, zooming, changing masks
etc.

To construct an ImagePlus use one of the following constructors:

I m a g e P l u s ()

Default constructor, creates a new empty ImagePlus and does no initialization.

I m a g e P l u s (j a v a . l a n g . S t r i n g u r l S t r i n g)

Constructs a new ImagePlus, loading the Image from the URL specified.

Version 1.5 – Sep. 23, 2001

Writing ImageJ PlugIns – A Tutorial 13

I m a g e P l u s (j a v a . l a n g . S t r i n g t i t l e , j a v a . a w t . I m a g e i m g)

Constructs a new ImagePlus based on a Java AWT image. The first argument is
the title of the ImageWindow that displays the image.

I m a g e P l u s (j a v a . l a n g . S t r i n g t i t l e , I m a g e P r o c e s s o r i p)

Constructs a new ImagePlus that uses the specified ImageProcessor. The first ar-
gument is the title of the ImageWindow that displays the image.

I m a g e P l u s (j a v a . l a n g . S t r i n g t i t l e , I m a g e S t a c k s t a c k)

Constructs a new ImagePlus from an ImageStack. The first argument is the title of
the ImageWindow that displays the image.

The type of an ImagePlus can be retrieved using

i n t g e t T y p e ()

Similar methods exist for getting the image dimension, the title (= name of the ImageWindow that dis-
plays this image), the AWT image that represents the ImagePlus and the file information:

i n t g e t H e i g h t ()
i n t g e t W i d t h ()
j a v a . l a n g . S t r i n g g e t T i t l e ()
j a v a . a w t . I m a g e g e t I m a g e ()
i j . i o . F i l e I n f o g e t F i l e I n f o ()

The AWT image the ImagePlus is based on and the title can be set using

v o i d s e t I m a g e (j a v a . a w t . I m a g e i m g)
v o i d s e t T i t l e (j a v a . l a n g . S t r i n g t i t l e)

An ImagePlus can has a list of additional properties that can be defined by the user. They are indexed
using a string and can be any type of object. These properties can be read and set using the methods:

j a v a . u t i l . P r o p e r t i e s g e t P r o p e r t i e s ()

Returns this image's Properties.

j a v a . l a n g . O b j e c t g e t P r o p e r t y (j a v a . l a n g . S t r i n g k e y)

Returns the property associated with 'key'.

v o i d s e t P r o p e r t y (j a v a . l a n g . S t r i n g k e y , j a v a . l a n g . O b j e c t v a l u e)

Adds a key-value pair to this image's properties.

4.3 Processors

Each image is based on an image processor. The type of the processor depends on the type of the image.
You can get and set the image processor using these two methods of an ImagePlus:

I m a g e P r o c e s s o r g e t P r o c e s s o r ()

Returns a reference to the current ImageProcessor.

v o i d s e t P r o c e s s o r (j a v a . l a n g . S t r i n g t i t l e , I m a g e P r o c e s s o r i p)

Sets the image processor to the one specified.

When working with plugin filters you do not have to care about retrieving the processor from the I m -
a g e P l u s, it is passed as argument to the r u n method.

I m a g e P r o c e s s o r is an abstract class. Depending on the type of the image we use a subclass of Image-
Processor. There are five of them:

Version 1.5 – Sep. 23, 2001

Writing ImageJ PlugIns – A Tutorial 14

B y t e P r o c e s s o r

Used for 8 bit grayscale and color images. It has a subclass called B i n a r y P r o c -
e s s o r for grayscale images that contain pixel values 0 and 255.

S h o r t P r o c e s s o r

Used for 16 bit grayscale images.

C o l o r P r o c e s s o r

Used for 32 bit integer images (RGB with 8 bit/channel).

F l o a t P r o c e s s o r

Used for 32 bit floating point images.

4.4 Accessing Pixel Values

To work with the image we need access to it’s pixels. We know how to get the image’s ImageProcessor.
Retrieving the pixel values can be done by using an ImageProcessor’s

j a v a . l a n g . O b j e c t g e t P i x e l s ()

method. It returns a reference to this image's pixel array. As the type of this array depends on the image
type we need to cast this array to the appropriate type when we get it.

i n t [] p i x e l s = (i n t []) m y P r o c e s s o r . g e t P i x e l s () ;

This example would work for an RGB image. As you have noticed we get back a one-dimensional array. It
contains the image scanline by scanline. To convert a position in this array to a (x,y) coordinate in an im-
age, we need at least the width of a scanline. The width and height of an ImageProcessor can be retrieved
using these methods:

i n t g e t H e i g h t ()
i n t g e t W i d t h ()

Now we have everything to iterate through the pixel array. As you have seen in the sample plugin this can
be done using two nested loops.

Some cases need a bit more explanation: Reading pixels from B y t e P r o c e s s o r, S h o r t P r o c e s s o r and
from C o l o r P r o c e s s o r.

Java’s b y t e data type is signed and has values ranging from – 128 to 127, while we would expect a 8 bit
grayscale image to have values from 0 to 255. If we cast a b y t e variable to another type we have to
make sure that the sign bit is eliminated. This can be done using a binary AND:

i n t p i x = 0 x f f & p i x e l s [i] ;
. . .
p i x e l s [i] = (b y t e) p i x ;

It’s the same with Java‘s s h o r t data type, which is also signed and has values ranging from - 32768 to
32767, while we would expect a 16 bit grayscale image to have values from 0 to 65535. If we cast a s h o r t
variable to another type we have to make sure that the sign bit is eliminated. This can be done using a
binary AND:

i n t p i x = p i x e l s [i] & 0 x f f f f ;

p i x e l s [i] = (s h o r t) p i x ;

ColorProcessors return the pixel array as an i n t [] . The values of the three color components are
packed into one i n t . They can be accessed as follows:

i n t r e d = (i n t) (p i x e l s [i] & 0 x f f 0 0 0 0) > > 1 6 ;
i n t g r e e n = (i n t) (p i x e l s [i] & 0 x 0 0 f f 0 0) > > 8 ;
i n t b l u e = (i n t) (p i x e l s [i] & 0 x 0 0 0 0 f f) ;
p i x e l s [i] = ((r e d & 0 x f f) < < 1 6) + ((g r e e n & 0 x f f) < < 8) + (b l u e & 0 x f f) ;

Version 1.5 – Sep. 23, 2001

Writing ImageJ PlugIns – A Tutorial 15

The pixel array you work on is just a reference to the ImageProcessor’s pixel array. So any modifications
effect the ImageProcessor immediately. However, if you want the ImageProcessor to use another (perhaps
newly created) array, you can do this using

v o i d s e t P i x e l s (j a v a . l a n g . O b j e c t p i x e l s)

You do not always have to retrieve or set the whole pixel array. ImageProcessor offers some other meth-
ods for retrieving or setting pixel values:

i n t g e t P i x e l (i n t x , i n t y)

Returns the value of the specified pixel.

v o i d p u t P i x e l (i n t x , i n t y , i n t v a l u e)

Sets the pixel at (x, y) to the specified value.

f l o a t g e t P i x e l V a l u e (i n t x , i n t y)

Returns the value of the specified pixel.

v o i d g e t C o l u m n (i n t x , i n t y , i n t [] d a t a , i n t l e n g t h)

Returns the pixels down the column starting at (x, y).

v o i d p u t C o l u m n (i n t x , i n t y , i n t [] d a t a , i n t l e n g t h)

Inserts the pixels contained in d a t a into a column starting at (x, y).

v o i d g e t R o w (i n t x , i n t y , i n t [] d a t a , i n t l e n g t h)

Returns the pixels along the horizontal line starting at (x,y).

v o i d p u t R o w (i n t x , i n t y , i n t [] d a t a , i n t l e n g t h)

Inserts the pixels contained in d a t a into a horizontal line starting at (x,y).

d o u b l e [] g e t L i n e (i n t x 1 , i n t y 1 , i n t x 2 , i n t y 2)

Returns the pixels along the line (x1,y1)/(x2,y2).

The method

i n t [] g e t P i x e l (i n t x , i n t y)

of ImagePlus returns the pixel value at (x,y) as a 4 element array.

All these methods should be used if you intend to modify just a few pixels. If you want to modify large
parts of the image it is faster to work with the pixel array.

4.5 Regions of Interest

A plugin filter does not always have to work on the whole image. ImageJ supports regions of interest
(ROI) which rectangular, oval, polygonal, freeform or text selections of regions of the image.

The bounding rectangle of the current ROI can be retrieved from the ImageProcessor using

j a v a . a w t . R e c t a n g l e g e t R o i ()

This makes it possible to just handle the pixels that are inside this rectangle. It is also possible to set a
processors ROI:

v o i d s e t R o i (i n t x , i n t y , i n t r w i d t h , i n t r h e i g h t)

This sets the ROI to the rectangle starting at (x ,y) with specified width and height.

More methods for working with ROIs can be found in ImagePlus. Remember that a plugin filter’s r u n
method receives an ImageProcessor as argument, but you can access the ImagePlus in the s e t u p
method.

v o i d s e t R o i (i n t x , i n t y , i n t w i d t h , i n t h e i g h t)

Creates a rectangular selection starting at (x,y) with specified width and height.

v o i d s e t R o i (j a v a . a w t . R e c t a n g l e r)

Version 1.5 – Sep. 23, 2001

Writing ImageJ PlugIns – A Tutorial 16

Creates a rectangular selection.

v o i d s e t R o i (R o i r o i)

Creates a selection based on the specified ROI object.

R o i g e t R o i ()

Returns a ROI object representing the current selection.

The classes representing the different types of ROIs can be found in i j . g u i . These classes are:

F r e e h a n d R O I
O v a l R O I
P o l y g o n R O I
R O I
T e x t R O I

4.6 Creating New Images

In many cases it will make sense that a plugin does not modify the original image, but creates a new image
that contains the modifications.

ImagePlus’ method

I m a g e P l u s c r e a t e I m a g e P l u s ()

returns a new ImagePlus with this ImagePlus' attributes, but no image. A similar
function is provided by ImageProcessor’s

I m a g e P r o c e s s o r c r e a t e P r o c e s s o r (i n t w i d t h , i n t h e i g h t)

which returns a new, blank processor with specified width and height which can be
used to create a new ImagePlus using the constructor

I m a g e P l u s (j a v a . l a n g . S t r i n g t i t l e , I m a g e P r o c e s s o r i p)

The class N e w I m a g e offers some useful static methods for creating a new I m a g e P l u s of a certain
type.

s t a t i c I m a g e P l u s c r e a t e B y t e I m a g e (j a v a . l a n g . S t r i n g t i t l e ,
 i n t w i d t h , i n t h e i g h t ,
 i n t s l i c e s , i n t f i l l)

Creates a new 8 bit grayscale or color image with the specified title, width and
height and number of slices. f i l l is one of the constants listed below that de-
termine how the image is initially filled.

s t a t i c I m a g e P l u s c r e a t e F l o a t I m a g e (j a v a . l a n g . S t r i n g t i t l e ,
 i n t w i d t h , i n t h e i g h t ,
 i n t s l i c e s , i n t f i l l)

Creates a new 32 bit floating point image with the specified title, width and height
and number of slices. f i l l is one of the constants listed below that determine
how the image is initially filled.

s t a t i c I m a g e P l u s c r e a t e R G B I m a g e (j a v a . l a n g . S t r i n g t i t l e ,
 i n t w i d t h , i n t h e i g h t ,
 i n t s l i c e s , i n t f i l l)

Creates a new RGB image with the specified title, width and height and number of
slices. f i l l is one of the constants listed below that determine how the image is
initially filled.

s t a t i c I m a g e P l u s c r e a t e S h o r t I m a g e (j a v a . l a n g . S t r i n g t i t l e ,
 i n t w i d t h , i n t h e i g h t ,
 i n t s l i c e s , i n t f i l l)

Version 1.5 – Sep. 23, 2001

Writing ImageJ PlugIns – A Tutorial 17

Creates a new 16 bit grayscale image with the specified title, width and height and
number of slices. f i l l is one of the constants listed below that determine how
the image is initially filled.

These are the possible values for the f i l l argument defined in class N e w I m a g e:

F I L L _ B L A C K

Fills the image with black color.

F I L L _ W H I T E

Fills the image with white color

F I L L _ R A M P

Fills the image with a horizontal grayscale ramp.

There are two methods to copy pixel values between different ImageProcessors:

v o i d c o p y B i t s (I m a g e P r o c e s s o r i p , i n t x l o c , i n t y l o c , i n t m o d e)

Copies the image represented by i p to x l o c , y l o c using the specified blitting
mode. This is one of the following constants defined in the interface B l i t t e r :

ADDdestination = destination+source

AND destination = destination AND source

AVERAGEdestination = (destination+source)/2

COPY..................................destination = source

C O P Y _ I N V E R T E Ddestination = 255-source

C O P Y _ T R A N S P A R E N T....White pixels are assumed as transparent.

D I F F E R E N C Edestination = |destination-source|

D I V I D E destination = destination/source

M A X destination = maximum(destination,source)

MIN destination = minimum(destination,source)

M U L T I P L Ydestination = destination*source

OR.......................................destination = destination OR source

SUBTRACT........................destination = destination-source

XORdestination = destination XOR source

v o i d i n s e r t (I m a g e P r o c e s s o r i p , i n t x l o c , i n t y l o c)

Inserts the image contained in i p at (x l o c , y l o c).

If you do not need a new ImagePlus for use in ImageJ but a Java AWT image you can retrieve it from the
image processor using

j a v a . a w t . I m a g e c r e a t e I m a g e ()

The same function is provided by ImagePlus’

j a v a . a w t . I m a g e g e t I m a g e ()

4.7 Displaying Images

Now that we can modify images we need to know how the changes can be made visible. ImageJ uses a
class called ImageWindow to display ImagePlus images. ImagePlus contains everything that is necessary
for updating or showing newly created images.

v o i d d r a w ()

Displays this image.

Version 1.5 – Sep. 23, 2001

Writing ImageJ PlugIns – A Tutorial 18

v o i d d r a w (i n t x , i n t y , i n t w i d t h , i n t h e i g h t)

Draws image and the ROI outline using a clipping rectangle.

v o i d u p d a t e A n d D r a w ()

Updates this image from the pixel data in its associated ImageProcessor, then dis-
plays it.

v o i d u p d a t e A n d R e p a i n t W i n d o w ()

Calls u p d a t e A n d D r a w to update from the pixel data and draw the image, and
also repaints the image window to force the information displayed above the image
(dimension, type, size) to be updated.

v o i d s h o w ()

Opens a window to display this image and clears the status bar.

v o i d s h o w (j a v a . l a n g . S t r i n g s t a t u s M e s s a g e)

Opens a window to display this image and displays s t a t u s M e s s a g e in the
status bar.

v o i d h i d e ()

Closes the window, if any, that is displaying this image.

4.8 ColorInverter PlugIn (Example)

With the knowledge of the previous sections we can write our first own plugin. We will modify the
Inverter plugin so that it handles RGB images. It will invert the colors of the pixels of the original image’s
ROI and display the result in a new window.

As mentioned before, we start from the existing plugin Inverter_. First of all we modify the class name.

i m p o r t i j . * ;

i m p o r t i j . g u i . * ;

i m p o r t i j . p r o c e s s . * ;

i m p o r t j . p l u g i n . f i l t e r . P l u g I n F i l t e r ;

i m p o r t j a v a . a w t . * ;

p u b l i c c l a s s C o l o r I n v e r t e r _ i m p l e m e n t s P l u g I n F i l t e r {
. . .

Don’t forget to rename the file to C o l o r I n v e r t e r _ . j a v a, otherwise you won’t be able to compile
it.

We want to handle RGB files, we do not want to apply it to stacks, we want to support non-rectangular
ROIs and we because we display the results in a new image we do not modify the original, so we change
the capabilities returned by the setup method to D O E S _ R G B + S U P P O R T S _ M A S K I N G + N O _ C H A N G E S.

p u b l i c i n t s e t u p (S t r i n g a r g , I m a g e P l u s i m p) {
i f (a r g . e q u a l s (" a b o u t ")) {

s h o w A b o u t () ; r e t u r n D O N E ;
}
r e t u r n D O E S _ R G B + S U P P O R T S _ M A S K I N G + N O _ C H A N G E S ;

}

The run method will do the actual work.

p u b l i c v o i d r u n (I m a g e P r o c e s s o r i p) {

First we save the dimension and the ROI of the original image to local variables.

Version 1.5 – Sep. 23, 2001

Writing ImageJ PlugIns – A Tutorial 19

i n t w = i p . g e t W i d t h () ;
i n t h = i p . g e t H e i g h t () ;
R e c t a n g l e r o i = i p . g e t R o i () ;

We want to have the result written to a new image, so we create a new RGB image of the same size, with
one slice and initially black and get the new image’s processor.

I m a g e P l u s i n v e r t e d = N e w I m a g e . c r e a t e R G B I m a g e (" I n v e r t e d i m a g e " , w , h ,
 1 , N e w I m a g e . F I L L _ B L A C K) ;
I m a g e P r o c e s s o r i n v _ i p = i n v e r t e d . g e t P r o c e s s o r () ;

Then we copy the image from the original ImageProcessor to (0,0) in the new image, using C O P Y blitting
mode (this mode just overwrites the pixels in the destination processor). We then get the pixel array of the
new image (which is of course identical to the old one). It’s a RGB image, so we get an i n t array.

i n v _ i p . c o p y B i t s (i p , 0 , 0 , B l i t t e r . C O P Y) ;
i n t [] p i x e l s = (i n t []) i n v _ i p . g e t P i x e l s () ;

We now go through the bounding rectangle of the ROI with two nested loops. The outer one runs
through the lines in the ROI, the inner one through the columns in each line. The offset in the one-
dimensional array is the start of the current line (= width of the image × number of scanlines).

f o r (i n t i = r o i . y ; i < r o i . y + r o i . h e i g h t ; i + +) {
i n t o f f s e t = i * w ;
f o r (i n t j = r o i . x ; j < r o i . x + r o i . w i d t h ; j + +) {

In the inner loop we calculate the position of the current pixel in the one-dimensional array (we save it in
a variable because we need it twice). We then get the value of the current pixel. Note that we can access
the pixel array of the new image, as it contains a copy of the old one.

i n t p o s = o f f s e t + j ;
i n t c = p i x e l s [p o s] ;

We extract the three color components as described above.

i n t r = (c & 0 x f f 0 0 0 0) > > 1 6 ;
i n t g = (c & 0 x 0 0 f f 0 0) > > 8 ;
i n t b = (c & 0 x 0 0 0 0 f f) ;

We invert each component by subtracting it’s value from 255. Then we pack the modified color compo-
nents into an integer again.

r = 2 5 5 - r ;
g = 2 5 5 - g ;
b = 2 5 5 - b ;
p i x e l s [p o s] = ((r & 0 x f f) < < 1 6) +
 ((g & 0 x f f) < < 8) +
 (b & 0 x f f) ;

}
}

We have now done all necessary modifications to the pixel array. Our image is still not visible, so we call
s h o w to open an ImageWindow that displays it. Then we call u p d a t e A n d D r a w to force the pixel array
to be read and the image to be updated.

i n v e r t e d . s h o w () ;
i n v e r t e d . u p d a t e A n d D r a w () ;

}
}

Version 1.5 – Sep. 23, 2001

Writing ImageJ PlugIns – A Tutorial 20

4.9 Stacks

ImageJ supports expandable arrays of images called image stacks, that consist of images (slices) of the
same size. In a plugin filter you can access the currently open stack by retrieving it from the current Im-
agePlus using

I m a g e S t a c k g e t S t a c k ()

ImagePlus also offers a method for creating a new stack:

I m a g e S t a c k c r e a t e E m p t y S t a c k ()

Returns an empty image stack that has the same width, height and color table as
this image.

Alternatively you can create an ImageStack using one of these constructors:

I m a g e S t a c k (i n t w i d t h , i n t h e i g h t)

Creates a new, empty image stack with specified height and width.

I m a g e S t a c k (i n t w i d t h , i n t h e i g h t , j a v a . a w t . i m a g e . C o l o r M o d e l c m)

Creates a new, empty image stack with specified height, width and color model.

To set the newly created stack as the stack of an image use

v o i d s e t S t a c k (j a v a . l a n g . S t r i n g t i t l e , I m a g e S t a c k s t a c k)

The number of slices of a stack can be retrieved using the methods

i n t g e t S i z e ()

of class ImageStack or

i n t g e t S t a c k S i z e ()

of class ImagePlus.

The currently displayed slice of an ImagePlus can be retrieved and set using

i n t g e t C u r r e n t S l i c e ()

v o i d s e t S l i c e (i n t i n d e x)

A stack offers several methods for retrieving and setting its properties:

i n t g e t H e i g h t ()

Returns the height of the stack.

i n t g e t W i d t h ()

Returns the width of the stack.

j a v a . l a n g . O b j e c t g e t P i x e l s (i n t n)

Returns the pixel array for the specified slice, where n is a number from 1 to the
number of slices. See also section 4.4.

v o i d s e t P i x e l s (j a v a . l a n g . O b j e c t p i x e l s , i n t n)

Assigns a pixel array to the specified slice, where n is a number from 1 to the
number of slices. See also section 4.4.

I m a g e P r o c e s s o r g e t P r o c e s s o r (i n t n)

Returns an ImageProcessor for the specified slice, where n is a number from 1 to
the number of slices. See also section 4.3.

j a v a . l a n g . S t r i n g g e t S l i c e L a b e l (i n t n)

Returns the label of the specified slice, where n is a number from 1 to the number
of slices.

Version 1.5 – Sep. 23, 2001

Writing ImageJ PlugIns – A Tutorial 21

v o i d s e t S l i c e L a b e l (j a v a . l a n g . S t r i n g l a b e l , i n t n)

Sets the label of the specified slice, where n is a number from 1 to the number of
slices.

j a v a . a w t . R e c t a n g l e g e t R o i ()

Returns the bounding rectangle of the stack’s ROI. For more information on ROIs
see section 4.5.

v o i d s e t R o i (j a v a . a w t . R e c t a n g l e r o i)

Sets the stack’s ROI to the specified rectangle. For more information on ROIs see
section 4.5.

Slices can be added to and removed from the I m a g e S t a c k using these methods:

v o i d a d d S l i c e (j a v a . l a n g . S t r i n g s l i c e L a b e l , I m a g e P r o c e s s o r i p)

Adds the image represented by i p to the end of the stack.

v o i d a d d S l i c e (j a v a . l a n g . S t r i n g s l i c e L a b e l , I m a g e P r o c e s s o r i p ,

 i n t n)

Adds the image represented by i p to the stack following slice 'n'.

v o i d a d d S l i c e (j a v a . l a n g . S t r i n g s l i c e L a b e l ,

 j a v a . l a n g . O b j e c t p i x e l s)

Adds an image represented by its pixel array to the end of the stack.

v o i d d e l e t e L a s t S l i c e ()

Deletes the last slice in the stack.

v o i d d e l e t e S l i c e (i n t n)

Deletes the specified slice, where n is in the range 1 .. number of slices.

4.10 StackAverage PlugIn (Example)

This example shows how to handle stacks. It calculates the average values of pixels located at the same
position in each slice of the stack and adds a slice showing the average values to the end of the stack.

First of all, we import the necessary packages. We want to work on the current stack so we need to im-
plement P l u g I n F i l t e r .

i m p o r t i j . * ;

i m p o r t i j . p l u g i n . f i l t e r . P l u g I n F i l t e r ;

i m p o r t i j . p r o c e s s . * ;

p u b l i c c l a s s S t a c k A v e r a g e _ i m p l e m e n t s P l u g I n F i l t e r {

We define the stack as instance variable because we will retrieve it in s e t u p and use it in r u n .

p r o t e c t e d I m a g e S t a c k s t a c k ;

In this method we get the stack from the current image and return the plugin’s capabilities – in this case
we indicate that it handles 8bit grayscale images and requires a stack as input.

p u b l i c i n t s e t u p (S t r i n g a r g , I m a g e P l u s i m p) {

s t a c k = i m p . g e t S t a c k () ;

r e t u r n D O E S _ 8 G + S T A C K _ R E Q U I R E D ;

}

Version 1.5 – Sep. 23, 2001

Writing ImageJ PlugIns – A Tutorial 22

In the run method we declare a b y t e array that will hold the pixels of the current slice. Then we get width
and height of the stack and calculate the length of the pixel array of each slice as the product of width and
height. s u m is the array to hold the summed pixel values.

p u b l i c v o i d r u n (I m a g e P r o c e s s o r i p) {

b y t e [] p i x e l s ;

i n t d i m e n s i o n = s t a c k . g e t W i d t h () * s t a c k . g e t H e i g h t () ;

i n t [] s u m = n e w i n t [d i m e n s i o n] ;

In the outer loop we iterate through the slices of the stack and get the pixel array from each slice. In the
inner loop we go through the pixel array of the current slice and add the pixel value to the corresponding
pixel in the s u m array.

f o r (i n t i = 1 ; i < = s t a c k . g e t S i z e () ; i + +) {

p i x e l s = (b y t e []) s t a c k . g e t P i x e l s (i) ;

f o r (i n t j = 0 ; j < d i m e n s i o n ; j + +) {

s u m [j] + = 0 x f f & p i x e l s [j] ;

}

}

We have now gone through the whole stack. The image containing the averages will be a 8 bit grayscale
image again, so we create a b y t e array for it. Then we iterate through the pixels in the s u m array and
divide each of them through the number of slices to get pixel values in the range 0..255.

b y t e [] a v e r a g e = n e w b y t e [d i m e n s i o n] ;

f o r (i n t j = 0 ; j < d i m e n s i o n ; j + +) {

a v e r a g e [j] = (b y t e) ((s u m [j] / s t a c k . g e t S i z e ()) & 0 x f f) ;

}

Finally we add a new slice to the stack. It is called “Average” and represented by the pixel array that con-
tains the average values.

s t a c k . a d d S l i c e (" A v e r a g e " , a v e r a g e) ;

}

4.11 Additional Reference

This reference is thought as a supplement to the concepts presented in this section. It is not complete – it
just covers what you will normally need for writing plugins. For a complete reference see the API docu-
mentation and the source code.

4.11.1 ImagePlus

ImagePlus

v o i d s e t W i n d o w (I m a g e W i n d o w w i n)

Sets the window that displays the image.

I m a g e W i n d o w g e t W i n d o w ()

Gets the window that is used to display the image.

v o i d m o u s e M o v e d (i n t x , i n t y)

Displays the cursor coordinates and pixel value in the status bar.

Version 1.5 – Sep. 23, 2001

Writing ImageJ PlugIns – A Tutorial 23

Multithreading

b o o l e a n l o c k ()

Locks the image so that it cannot be accessed by another thread.

b o o l e a n l o c k S i l e n t l y ()

Similar to lock, but doesn't beep and display an error message if the attempt to
lock the image fails.

v o i d u n l o c k ()

Unlocks the image.

Lookup Tables

L o o k U p T a b l e c r e a t e L u t ()

Creates a LookUpTable based on the image.

Statistics

i j . p r o c e s s . I m a g e S t a t i s t i c s g e t S t a t i s t i c s ()

Returns an ImageStatistics object generated using the standard measurement op-
tions (area, mean, mode, min and max).

i j . p r o c e s s . I m a g e S t a t i s t i c s g e t S t a t i s t i c s (i n t m O p t i o n s)

Returns an ImageStatistics object generated using the specified measurement op-
tions.

i j . p r o c e s s . I m a g e S t a t i s t i c s g e t S t a t i s t i c s (i n t m O p t i o n s , i n t
n B i n s)

Returns an ImageStatistics object generated using the specified measurement op-
tions and histogram bin count.

Calibration

v o i d s e t C a l i b r a t i o n (i j . m e a s u r e . C a l i b r a t i o n c a l)

Sets this image's calibration.

v o i d s e t G l o b a l C a l i b r a t i o n (i j . m e a s u r e . C a l i b r a t i o n g l o b a l)

Sets the system-wide calibration.

i j . m e a s u r e . C a l i b r a t i o n g e t C a l i b r a t i o n ()

Returns this image's calibration.

4.11.2 ImageProcessor

Geometric transforms

v o i d f l i p H o r i z o n t a l ()

Flips the image horizontally.

v o i d f l i p V e r t i c a l ()

Flips the image vertically.

v o i d r o t a t e (d o u b l e a n g l e)

Rotates the image a n g l e degrees clockwise.

v o i d s c a l e (d o u b l e x S c a l e , d o u b l e y S c a l e)

Version 1.5 – Sep. 23, 2001

Writing ImageJ PlugIns – A Tutorial 24

Scales the image by the specified factors.

I m a g e P r o c e s s o r c r o p ()

Crops the image to the bounding rectangle of the current ROI. Returns a new im-
age processor that represents the cropped image.

I m a g e P r o c e s s o r r e s i z e (i n t d s t W i d t h , i n t d s t H e i g h t)

Resizes the image to the specified destination size. Returns a new image processor
that represents the resized image.

I m a g e P r o c e s s o r r o t a t e L e f t ()

Rotates the image 90 degrees counter-clockwise. Returns a new image processor
that represents the rotated image.

I m a g e P r o c e s s o r r o t a t e R i g h t ()

Rotates the image 90 degrees clockwise. Returns a new image processor that repre-
sents the rotated image.

v o i d s e t I n t e r p o l a t e (b o o l e a n i n t e r p o l a t e)

Setting interpolate true causes s c a l e (), r e s i z e () and r o t a t e () to do bi-
linear interpolation.

Filters

v o i d c o n v o l v e 3 x 3 (i n t [] k e r n e l)

Convolves the image with the specified 3x3 convolution matrix. The following
methods are based on c o n v o l v e:

v o i d s h a r p e n ()

Sharpens the image using a 3x3 convolution kernel.

v o i d s m o o t h ()

Replaces each pixel with the 3x3 neighborhood mean.

v o i d f i l t e r (i n t t y p e)

A 3x3 filter operation, the argument defines the filter type. The following methods
are based on f i l t e r :

v o i d d i l a t e ()

Dilates the image using a 3x3 minimum filter.

v o i d e r o d e ()

Erodes the image using a 3x3 maximum filter.

v o i d f i n d E d g e s ()

Finds edges using a Sobel operator.

v o i d m e d i a n F i l t e r ()

A 3x3 median filter.

v o i d g a m m a (d o u b l e v a l u e)

A gamma correction.

v o i d i n v e r t ()

Inverts an image.

v o i d a d d (i n t v a l u e)

Adds the argument to each pixel value.

v o i d m u l t i p l y (d o u b l e v a l u e)

Version 1.5 – Sep. 23, 2001

Writing ImageJ PlugIns – A Tutorial 25

Multiplies each pixel value with the argument.

v o i d a n d (i n t v a l u e)

Binary AND of each pixel value with the argument.

v o i d o r (i n t v a l u e)

Binary OR of each pixel value with the argument.

v o i d x o r (i n t v a l u e)

Binary exclusive OR of each pixel value with the argument.

v o i d l o g ()

Calculates pixel values on a logarithmic scale.

v o i d n o i s e (d o u b l e r a n g e)

Adds random noise (random numbers within r a n g e) to the image.

Drawing

v o i d s e t C o l o r (j a v a . a w t . C o l o r c o l o r)

Sets the foreground color. This will set the default fill/draw value to the pixel value
that represents this color.

v o i d s e t V a l u e (d o u b l e v a l u e)

Sets the default fill/draw value.

v o i d s e t L i n e W i d t h (i n t w i d t h)

Sets the line width.

v o i d m o v e T o (i n t x , i n t y)

Sets the current drawing location to (x,y).

v o i d l i n e T o (i n t x 2 , i n t y 2)

Draws a line from the current drawing location to (x2,y2).

v o i d d r a w P i x e l (i n t x , i n t y)

Sets the pixel at (x ,y) to the current drawing color.

v o i d d r a w D o t (i n t x c e n t e r , i n t y c e n t e r)

Draws a dot using the current line width and color.

v o i d d r a w D o t 2 (i n t x , i n t y)

Draws 2x2 dot in the current color.

v o i d f i l l ()

Fills the current rectangular ROI with the current drawing color.

v o i d f i l l (i n t [] m a s k)

Fills pixels that are within the current ROI and part of the mask (i.e. pixels that
have value 0 = black in the mask array).

v o i d d r a w S t r i n g (j a v a . l a n g . S t r i n g s)

Draws a string at the current location with the current color.

i n t g e t S t r i n g W i d t h (j a v a . l a n g . S t r i n g s)

Returns the width in pixels of the specified string.

Colors

i n t g e t B e s t I n d e x (j a v a . a w t . C o l o r c)

Version 1.5 – Sep. 23, 2001

Writing ImageJ PlugIns – A Tutorial 26

Returns the LUT index that's the best match for this color.

j a v a . a w t . i m a g e . C o l o r M o d e l g e t C o l o r M o d e l ()

Returns this processor’s color model.

v o i d i n v e r t L u t ()

Inverts the values in the lookup table.

Minimum, Maximum and Threshold

d o u b l e g e t M i n ()

Returns the smallest displayed pixel value.

d o u b l e g e t M a x ()

Returns the largest displayed pixel value.

v o i d s e t M i n A n d M a x (d o u b l e m i n , d o u b l e m a x)

Maps the pixels in this image from min…max to 0…255.

v o i d r e s e t M i n A n d M a x ()

For short and float images, recalculates the min and max image values needed to
correctly display the image.

v o i d a u t o T h r e s h o l d ()

Calculates auto threshold of an image and applies it.

d o u b l e g e t M i n T h r e s h o l d ()

Returns the minimum threshold.

d o u b l e g e t M a x T h r e s h o l d ()

Returns the maximum threshold.

v o i d s e t T h r e s h o l d (d o u b l e m i n T h r e s h o l d , d o u b l e m a x T h r e s h o l d , i n t l u t U p -
d a t e)

Sets the minimum and maximum threshold levels.

Histograms

i n t [] g e t H i s t o g r a m ()

Returns the histogram of the image. This method will return a luminosity histo-
gram for RGB images and n u l l for floating point images.

i n t g e t H i s t o g r a m S i z e ()

The size of the histogram is 256 for 8 bit and RGB images and max–min+1 for 16
bit integer images.

Snapshots (Undo)

v o i d s n a p s h o t ()

Saves the current state of the processor as snapshot.

j a v a . l a n g . O b j e c t g e t P i x e l s C o p y ()

Returns a reference to this image's snapshot (undo) array, this is the pixel array be-
fore the last modification.

v o i d r e s e t ()

Resets the processor to the state saved in the snapshot.

v o i d r e s e t (i n t [] m a s k)

Version 1.5 – Sep. 23, 2001

Writing ImageJ PlugIns – A Tutorial 27

Resets the processor to the state saved in the snapshot, excluding pixels that are
part of m a s k.

4.11.3 ImageStack

Accessing Images

j a v a . l a n g . O b j e c t [] g e t I m a g e A r r a y ()

Returns the stack as an array of ImagePlus objects.

Color

b o o l e a n i s H S B ()

Returns true if this is a 3-slice HSB stack.

b o o l e a n i s R G B ()

Returns true if this is a 3-slice RGB stack.

j a v a . a w t . i m a g e . C o l o r M o d e l g e t C o l o r M o d e l ()

Returns this stack's color model.

v o i d s e t C o l o r M o d e l (j a v a . a w t . i m a g e . C o l o r M o d e l c m)

Assigns a new color model to this stack.

Version 1.5 – Sep. 23, 2001

Writing ImageJ PlugIns – A Tutorial 28

5 ImageJ’s Utility Methods and Image Conversion
The ImageJ API contains a class called I J that contains some very useful static methods. These utility
methods are also used in plugins generated using “Plugins/Record”.
Section 5.8 deals with conversion from one image type to another.

5.1 (Error) Messages

It is often necessary that a plugin displays a message – be it an error message or any other information. In
the first case you will use

s t a t i c v o i d e r r o r (j a v a . l a n g . S t r i n g m s g)

which displays a message in a dialog box titled “Error”, in the second case

s t a t i c v o i d s h o w M e s s a g e (j a v a . l a n g . S t r i n g m s g)

which displays a message in a dialog box titled “Message”. You can also specify the
title of the message box using

s t a t i c v o i d s h o w M e s s a g e (j a v a . l a n g . S t r i n g t i t l e , j a v a . l a n g . S t r i n g m s g)

All these methods display messages that the user has to accept. If you want to let
the user chose whether to cancel the plugin or to let it continue use

s t a t i c b o o l e a n s h o w M e s s a g e W i t h C a n c e l (j a v a . l a n g . S t r i n g t i t l e ,
 j a v a . l a n g . S t r i n g m s g)

This method returns false if the user clicked cancel, true otherwise.

There are also some predefined messages:

s t a t i c v o i d n o I m a g e ()

Displays a “no images are open” dialog box.

s t a t i c v o i d o u t O f M e m o r y (j a v a . l a n g . S t r i n g n a m e)

Displays an “out of memory” message in the ImageJ window.

s t a t i c b o o l e a n v e r s i o n L e s s T h a n (j a v a . l a n g . S t r i n g v e r s i o n)

Displays an error message and returns false if the ImageJ version is less than the
one specified.

Version 1.5 – Sep. 23, 2001

Writing ImageJ PlugIns – A Tutorial 29

5.2 ImageJ Window, Status Bar and Progress Bar

The ImageJ main window consists of the following components:

status
b

text
l

menu

tool
b

progress

Displaying Text

To display a line of text in the text panel (as “ImageJ 1.14c” in the screenshot) use

s t a t i c v o i d w r i t e (j a v a . l a n g . S t r i n g s)

It is possible to use the text panel as a table (e.g. for displaying statistics, measurements, etc.). In that case
ImageJ lets you set the headings of the columns using

s t a t i c v o i d s e t C o l u m n H e a d i n g s (j a v a . l a n g . S t r i n g h e a d i n g s)

Note that this method clears the entire text panel.

You will often want to displays numbers, which you can format for output using

s t a t i c j a v a . l a n g . S t r i n g d 2 s (d o u b l e n)

Converts a number to a formatted string using two digits to the right of the deci-
mal point.

s t a t i c j a v a . l a n g . S t r i n g d 2 s (d o u b l e n , i n t p r e c i s i o n)

Converts a number to a rounded formatted string.

Status Bar

Text can also be displayed in the status bar above the text panel using the method

s t a t i c v o i d s h o w S t a t u s (j a v a . l a n g . S t r i n g s)

It can be useful to display the time that was needed for an operation.

s t a t i c v o i d s h o w T i m e (I m a g e P l u s i m p , l o n g s t a r t , j a v a . l a n g . S t r i n g s t r)

will display the string argument you specify, followed by the time elapsed since the specified start value
and the rate of processed pixels per second.

Progress Bar

The progress of the current operation can be visualized using ImageJ’s progress bar.

s t a t i c v o i d s h o w P r o g r e s s (d o u b l e p r o g r e s s)

updates the position of the progress bar to the specified value (in the range from 0.0 to 1.0).

Version 1.5 – Sep. 23, 2001

Writing ImageJ PlugIns – A Tutorial 30

5.3 User input

Often user input (e.g. a parameter) is required in a plugin. ImageJ offers two simple methods for that pur-
pose.

s t a t i c d o u b l e g e t N u m b e r (j a v a . l a n g . S t r i n g p r o m p t , d o u b l e d e f a u l t N u m b e r)

Allows the user to enter a number in a dialog box.

s t a t i c j a v a . l a n g . S t r i n g g e t S t r i n g (j a v a . l a n g . S t r i n g p r o m p t ,
 j a v a . l a n g . S t r i n g d e f a u l t S t r i n g)

Allows the user to enter a string in a dialog box.

A way to build more sophisticated dialogs is presented in section 6.2, accessing mouse and keyboard
events is discussed in section 6.7.

5.4 Calling Menu Commands

You can access all menu commands from a plugin. There are two different methods:

s t a t i c v o i d d o C o m m a n d (j a v a . l a n g . S t r i n g c o m m a n d)

Starts executing a menu command in a separate thread and returns immediately.
Executing the command in a separate thread means that the program will not wait
until the command is executed, it will immediately proceed. This has the advantage
that the program is not blocked while the command is running.

s t a t i c v o i d r u n (j a v a . l a n g . S t r i n g c o m m a n d)

Runs a menu command in the current thread, the program is will continue after
the command has finished.

5.5 Calling Other PlugIns

Like menu commands you can also run other plugins.

s t a t i c j a v a . l a n g . O b j e c t r u n P l u g I n (j a v a . l a n g . S t r i n g c l a s s N a m e ,
 j a v a . l a n g . S t r i n g a r g)

Runs the plugin specified by its class name and initializes it with the specified ar-
gument.

5.6 MessageTest PlugIn (Example)

We will now look at a plugin that uses some of the utility methods presented in this chapter. This time, we
do not need an image, so we implement the interface P l u g I n . We also have to import the package i j as
we need the class I J from there.

i m p o r t i j . * ;
i m p o r t i j . p l u g i n . P l u g I n ;
p u b l i c c l a s s M e s s a g e _ T e s t i m p l e m e n t s P l u g I n {

All we have to implement is the run method. We do not need the argument, so we ignore it. First of all we
display a string in the status bar that informs the user that the plugin was started. Then we set the progress
bar to 0% and show an error message.

p u b l i c v o i d r u n (S t r i n g a r g) {
I J . s h o w S t a t u s (" P l u g i n M e s s a g e T e s t s t a r t e d . ") ;
I J . s h o w P r o g r e s s (0 . 0) ;
I J . e r r o r (" I n e e d u s e r i n p u t ! ") ;

We want the user to input a string and set the progress bar to 50% after that. Then we write a message
into the main window saying that we were going to start the sample plugin R e d A n d B l u e (this is one of

Version 1.5 – Sep. 23, 2001

Writing ImageJ PlugIns – A Tutorial 31

the plugins that come with ImageJ and displays a new image with a red/blue gradient) and run the plugin.
Finally we set the progress bar to 100% and show a custom message box.

S t r i n g n a m e = I J . g e t S t r i n g (" P l e a s e e n t e r y o u r n a m e : " ,
" I . J . U s e r ") ;

I J . s h o w P r o g r e s s (0 . 5) ;
I J . w r i t e (" S t a r t i n g s a m p l e p l u g i n R e d A n d B l u e . . . ") ;
I J . r u n P l u g I n (" R e d A n d B l u e _ " , " ") ;
I J . s h o w P r o g r e s s (1 . 0) ;
I J . s h o w M e s s a g e (" F i n i s h e d . " , n a m e + " , t h a n k y o u f o r r u n n i n g t h i s

p l u g i n ") ;
}

}

5.7 More utilities

Keyboard & Sound

s t a t i c v o i d b e e p ()

Emits an audio beep.

s t a t i c b o o l e a n a l t K e y D o w n ()

Returns true if the alt key is down.

s t a t i c b o o l e a n s p a c e B a r D o w n ()

Returns true if the space bar is down.

Accessing GUI Elements

s t a t i c I m a g e J g e t I n s t a n c e ()

Returns a reference to the “ImageJ” frame.

s t a t i c j a v a . a p p l e t . A p p l e t g e t A p p l e t ()

Returns the applet that created this ImageJ or n u l l if running as an application.

s t a t i c T e x t P a n e l g e t T e x t P a n e l ()

Returns a reference to ImageJ’s text panel.

Misc

s t a t i c b o o l e a n i s M a c i n t o s h ()

Returns true if this machine is a Macintosh.

s t a t i c v o i d w a i t (i n t m s e c s)

Delays m s e c s milliseconds.

s t a t i c j a v a . l a n g . S t r i n g f r e e M e m o r y ()

Returns the amount of free memory in KB as string.

5.8 Image Type Conversion

The class I m a g e C o n v e r t e r in i j . p r o c e s s provides a number of methods for image type conversion.
They can be either accesed directly or by using the class i j . C o n v e r t e r as a convenient interface.

An instance of the converter can be constructed using

Version 1.5 – Sep. 23, 2001

Writing ImageJ PlugIns – A Tutorial 32

C o n v e r t e r (I m a g e P l u s i m p)

The only method of this class is

p u b l i c v o i d c o n v e r t (j a v a . l a n g . S t r i n g i t e m)

where item is a string specifying the destination type. It can have one of the values "8-bit", "16-bit", "32-
bit", "8-bit Color", "RGB Color", "RGB Stack" and "HSB Stack".

Similarly, an I m a g e C o n v e r t e r instance can be created using

ImageConverter(ImagePlus imp)

The methods for conversion are:

p u b l i c v o i d c o n v e r t T o G r a y 8 ()

Converts this ImagePlus to 8-bit grayscale.

p u b l i c v o i d c o n v e r t T o G r a y 1 6 ()

Converts this ImagePlus to 16-bit grayscale.

p u b l i c v o i d c o n v e r t T o G r a y 3 2 ()

Converts this ImagePlus to 32-bit grayscale.

p u b l i c v o i d c o n v e r t T o R G B ()

Converts this ImagePlus to RGB.

p u b l i c v o i d c o n v e r t T o R G B S t a c k ()

Converts an RGB image to an RGB (red, green and blue) stack.

p u b l i c v o i d c o n v e r t T o H S B ()

Converts an RGB image to a HSB (hue, saturation and brightness) stack.

p u b l i c v o i d c o n v e r t R G B S t a c k T o R G B ()

Converts a 2 or 3 slice 8-bit stack to RGB.

p u b l i c v o i d c o n v e r t H S B T o R G B ()

Converts a 3-slice (hue, saturation, brightness) 8-bit stack to RGB.

p u b l i c v o i d c o n v e r t R G B t o I n d e x e d C o l o r (i n t n C o l o r s)

Converts an RGB image to 8-bits indexed color. 'nColors' must be greater than 1
and less than or equal to 256.

To scale to 0-255 when converting short to byte or float to byte and to 0-65535 when converting float to
short set scaling t r u e using

p u b l i c s t a t i c v o i d s e t D o S c a l i n g (b o o l e a n s c a l e C o n v e r s i o n s)

p u b l i c s t a t i c b o o l e a n g e t D o S c a l i n g ()

returns true if scaling is enabled.

Version 1.5 – Sep. 23, 2001

Writing ImageJ PlugIns – A Tutorial 33

6 Windows
By default, plugins work with ImagePlus objects displayed in ImageWindows. They can output informa-
tion to the ImageJ window but they cannot control a window. Sometimes this can be necessary, especially
for getting user input.

6.1 PlugInFrame

A PlugInFrame is a subclass of an AWT frame that implements the P l u g I n interface. Your plugin will be
implemented as a subclass of PlugInFrame.

There is one constructor for a PlugInFrame. It receives the title of the window as argument:

P l u g I n F r a m e (j a v a . l a n g . S t r i n g t i t l e)

As this class is a plugin, the method

v o i d r u n (j a v a . l a n g . S t r i n g a r g)

declared in the P l u g I n interface is implemented and can be overwritten by your plugin’s r u n method.

Of course all methods declared in j a v a . a w t . F r a m e and its superclasses can be overwritten. For details
consult the Java AWT API documentation.

6.2 GenericDialog

In section 5.3 we saw a very simple method of getting user input. If you need more user input than just
one string or number, GenericDialog helps you build a modal (that means that the programs only pro-
ceeds after the user has answered the dialog) AWT dialog. The GenericDialog can be built on the fly and
you don’t have to care about event handling.

There are two constructors:

G e n e r i c D i a l o g (j a v a . l a n g . S t r i n g t i t l e)

Creates a new GenericDialog with the specified title.

G e n e r i c D i a l o g (j a v a . l a n g . S t r i n g t i t l e , j a v a . a w t . F r a m e p a r e n t)

Creates a new GenericDialog using the specified title and parent frame. The Im-
ageJ frame can be retrieved using I J . g e t I n s t a n c e ().

The dialog can be displayed using

v o i d s h o w D i a l o g ()

Adding controls

GenericDialog offers several methods for adding standard controls to the dialog:

v o i d a d d C h e c k b o x (j a v a . l a n g . S t r i n g l a b e l , b o o l e a n d e f a u l t V a l u e)

Adds a checkbox with the specified label and default value.

Version 1.5 – Sep. 23, 2001

Writing ImageJ PlugIns – A Tutorial 34

p u b l i c v o i d a d d C h e c k b o x G r o u p (i n t r o w s , i n t c o l u m n s ,

 j a v a . l a n g . S t r i n g [] l a b e l s ,

 b o o l e a n [] d e f a u l t V a l u e s)

Adds a group of checkboxs using a grid layout with the specified number of rows
and columns. The arrays contain the labels and the default values of the check-
boxes.

v o i d a d d C h o i c e (j a v a . l a n g . S t r i n g l a b e l ,

 j a v a . l a n g . S t r i n g [] i t e m s ,

 j a v a . l a n g . S t r i n g d e f a u l t I t e m)

Adds a drop down list (popup menu) with the specified label, items and default
value.

v o i d a d d M e s s a g e (j a v a . l a n g . S t r i n g t e x t)

Adds a message consisting of one or more lines of text.

v o i d a d d N u m e r i c F i e l d (j a v a . l a n g . S t r i n g l a b e l ,

 d o u b l e d e f a u l t V a l u e , i n t d i g i t s)

Adds a numeric field with the specified label, default value and number of digits.

v o i d a d d S t r i n g F i e l d (j a v a . l a n g . S t r i n g l a b e l ,

 j a v a . l a n g . S t r i n g d e f a u l t T e x t)

Adds a 8 column text field with the specified label and default value.

v o i d a d d S t r i n g F i e l d (j a v a . l a n g . S t r i n g l a b e l ,

 j a v a . l a n g . S t r i n g d e f a u l t T e x t , i n t c o l u m n s)

Adds a text field with the specified label, default value and number of columns.

v o i d a d d T e x t A r e a s (j a v a . l a n g . S t r i n g t e x t 1 ,

 j a v a . l a n g . S t r i n g t e x t 2 ,

 i n t r o w s , i n t c o l u m n s)

Adds one or two text areas (side by side) with the specified initial contents and
number of rows and columns. If t e x t 2 is n u l l , the second text area will not be
displayed.

Getting Values From Controls

After the user has closed the dialog window, you can access the values of the controls with the methods
listed here. There is one method for each type of control. If the dialog contains more than one control of
the same type, each call of the method will return the value of the next control of this type in the order
they were added to the dialog.

b o o l e a n g e t N e x t B o o l e a n ()

Returns the state of the next checkbox.

j a v a . l a n g . S t r i n g g e t N e x t C h o i c e ()

Returns the selected item in the next drop down list (popup menu).

i n t g e t N e x t C h o i c e I n d e x ()

Returns the index of the selected item in the next drop down list (popup menu).

d o u b l e g e t N e x t N u m b e r ()

Returns the contents of the next numeric field.

Version 1.5 – Sep. 23, 2001

Writing ImageJ PlugIns – A Tutorial 35

j a v a . l a n g . S t r i n g g e t N e x t S t r i n g ()

Returns the contents of the next text field.

j a v a . l a n g . S t r i n g g e t N e x t T e x t ()

Returns the contents of the next text area.

The method

b o o l e a n w a s C a n c e l e d ()

returns true, if the user closed the dialog using the cancel button, and false, if the user clicked the OK
button.

If the dialog contains numeric fields, use

b o o l e a n i n v a l i d N u m b e r ()

to check if the values in the numeric fields are valid numbers. This method returns true if at least one
numeric filed does not contain a valid number.

GenericDialog extends AWT Dialog, so you can use any method of j a v a . a w t . D i a l o g or one of ist
superclasses. For more information consult the AWT documentation.

6.3 FrameDemo PlugIn (Example)

This demo shows the usage of GenericDialog and PlugInFrame. It displays a dialog that lets the user
specify the width and height of the PlugInFrame that will be displayed after closing the dialog.

We import the i j and i j . p r o c e s s package, the i j . g u i package, where GenericDialog is located and
the classes PlugInFrame and AWT Label.

i m p o r t i j . * ;

i m p o r t i j . g u i . * ;

i m p o r t i j . p l u g i n . f r a m e . P l u g I n F r a m e ;

i m p o r t j a v a . a w t . L a b e l ;

Our plugin is a subclass of PlugInFrame which implements the P l u g I n interface, so we don’t have to
implement an interface here.

p u b l i c c l a s s F r a m e D e m o _ e x t e n d s P l u g I n F r a m e {

We overwrite the default constructor of the new class. If we wouldn’t do that, the superclass’ default con-
structor P l u g I n F r a m e () would be called, which does not exist. So we have to call the superclass’ con-
structor and specify a title for the new frame.

p u b l i c F r a m e D e m o _ () {

s u p e r (" F r a m e D e m o ") ;

}

In the r u n method we create a GenericDialog with the title “FrameDemo settings”. Then we add two 3
digit numeric fields with a default value of 200.

p u b l i c v o i d r u n (S t r i n g a r g) {

G e n e r i c D i a l o g g d = n e w G e n e r i c D i a l o g (" F r a m e D e m o s e t t i n g s ") ;

g d . a d d N u m e r i c F i e l d (" F r a m e w i d t h : " , 2 0 0 . 0 , 3) ;

g d . a d d N u m e r i c F i e l d (" F r a m e h e i g h t : " , 2 0 0 . 0 , 3) ;

We show the dialog. As it is modal, the program is stopped until the user closes the dialog. If the user
clicks “Cancel” we display an error message and leave the r u n method.

g d . s h o w D i a l o g () ;

Version 1.5 – Sep. 23, 2001

Writing ImageJ PlugIns – A Tutorial 36

i f (g d . w a s C a n c e l e d ()) {

I J . e r r o r (" P l u g I n c a n c e l e d ! ") ;

r e t u r n ;

}

Here we get the values of the numeric fields with two calls of g e t N e x t N u m b e r (). We set the size of the
FrameDemo window to these values and add a centered AWT Label with the text “PlugInFrame demo”.
Finally we show the frame.

t h i s . s e t S i z e ((i n t) g d . g e t N e x t N u m b e r () , (i n t) g d . g e t N e x t N u m b e r ()) ;

t h i s . a d d (n e w L a b e l (" P l u g I n F r a m e d e m o " , L a b e l . C E N T E R)) ;

t h i s . s h o w () ;

} }

6.4 ImageWindow

An ImageWindow is a frame (derived from j a v a . a w t . F r a m e) that displays an ImagePlus. The frame
contains an ImageCanvas on which the image is painted and a line of information text on top. Each Im-
agePlus is associated with an ImageWindow, which is created when the image’s s h o w () method is called
for the first time. ImageWindows can also be created using one of the constructors:

I m a g e W i n d o w (I m a g e P l u s i m p)

Creates a new ImageWindow that contains the specified image.

I m a g e W i n d o w (I m a g e P l u s i m p , I m a g e C a n v a s i c)

Creates a new ImageWindow contains the specified image which will be painted on
the specified canvas.

ImageJ maintains the list of open windows using the WindowManager class. When the constructor of
ImageWindow is called, the window is added to the list of open windows.

b o o l e a n c l o s e ()

Closes the window and removes it from the list. This method will ask the user
whether the image displayed in this window shall be saved. If the user wants to
save the image the method returns false. Otherwise it returns true and the image is
deleted.

b o o l e a n i s C l o s e d ()

Returns true if close() has already been called, false otherwise.

The image displayed in an ImageWindow and the canvas on which the image is drawn can be accessed
using

I m a g e C a n v a s g e t C a n v a s ()

I m a g e P l u s g e t I m a g e P l u s ()

ImageWindow provides methods for the cut, copy and paste command:

v o i d c o p y (b o o l e a n c u t)

Copies the current ROI (which has to be rectangular) to the clipboard. If the ar-
gument c u t is true the ROI is cut and not copied.

v o i d p a s t e ()

Pastes the content of the clipboard into the current image. The content of the
clipboard may not be larger than the current image and must be the same type.

Like an ImagePlus an ImageWindow has a method

Version 1.5 – Sep. 23, 2001

Writing ImageJ PlugIns – A Tutorial 37

v o i d m o u s e M o v e (i n t x , i n t y)

This method displays the specified coordinates and the pixel value of the image in
this window in the status bar of the ImageJ window.

ImagePlus has also a useful public boolean variable called r u n n i n g , which is set f a l s e if the user clicks
in the window, presses escape or closes the window. This can be used in a plugin like shown in the fol-
lowing fragment to give the user a possibility to interrupt a plugin.

. . .

w i n . r u n n i n g = t r u e ;

w h i l e (w i n . r u n n i n g) {

/ / d o c o m p u t a t i o n
}

6.5 ImageCanvas

Each ImageWindow has an ImageCanvas on which the image is drawn. This is a subclass of
j a v a . a w t . C a n v a s and also implements a MouseListener and a MouseMotionListener (for more infor-
mation see the Java API documentation, package j a v a . a w t . e v e n t). It can therefore be useful for event
handling, e.g. by subclassing it. Additionally it can be used to get information on how the image is dis-
played an to modify this. Some useful methods of ImageCanvas are listed here:

j a v a . a w t . P o i n t g e t C u r s o r L o c ()

Returns the current cursor location.

d o u b l e g e t M a g n i f i c a t i o n ()

Returns current magnification factor of the image.

j a v a . a w t . R e c t a n g l e g e t S r c R e c t ()

The surrounding rectangle of the image with current magnification.

i n t o f f S c r e e n X (i n t x)

Converts a screen x-coordinate to an offscreen x-coordinate.

i n t o f f S c r e e n Y (i n t y)

Converts a screen y-coordinate to an offscreen y-coordinate.

i n t s c r e e n X (i n t x)

Converts an offscreen x-coordinate to a screen x-coordinate.

i n t s c r e e n Y (i n t y)

Converts an offscreen y-coordinate to a screen y-coordinate.

v o i d s e t C u r s o r (i n t x , i n t y)

Sets the cursor based on the current tool and cursor location.

v o i d s e t I m a g e U p d a t e d ()

ImagePlus.updateAndDraw calls this method to get paint to update the image
from the ImageProcessor.

v o i d s e t M a g n i f i c a t i o n (d o u b l e m a g n i f i c a t i o n)

Sets new magnification factor for image.

v o i d z o o m I n (i n t x , i n t y)

Zooms in by making the window bigger.

Version 1.5 – Sep. 23, 2001

Writing ImageJ PlugIns – A Tutorial 38

v o i d z o o m O u t (i n t x , i n t y)

Zooms out by making s r c R e c t bigger.

6.6 Subclasses of ImageWindow

6.6.1 StackWindow

A StackWindow is a frame for displaying ImageStacks. It is derived form ImageWindow and has a hori-
zontal scrollbar to navigate within the stack.

v o i d s h o w S l i c e (i n t i n d e x)

Displays the specified slice and updates the stack scrollbar.

v o i d u p d a t e S l i c e S e l e c t o r ()

Updates the stack scrollbar.

6.6.2 Histogram Window

HistogramWindow is a subclass of ImageWindow designed to display histograms. There are two con-
structors:

H i s t o g r a m W i n d o w (I m a g e P l u s i m p)

Displays a histogram (256 bins) of the specified image. The window has the title
“Histogram“.

H i s t o g r a m W i n d o w (j a v a . l a n g . S t r i n g t i t l e , I m a g e P l u s i m p ,

 i n t b i n s)

Displays a histogram of the image, using the specified title and number of bins.

v o i d s h o w H i s t o g r a m (I m a g e P l u s i m p , i n t b i n s)

Displays the histogram of the image using the specified number of bins in the
HistogramWindow.

6.6.3 PlotWindow

This is a subclass of ImageWindow designed for displaying plots in a (x,y)-plane

P l o t W i n d o w (j a v a . l a n g . S t r i n g t i t l e ,

 j a v a . l a n g . S t r i n g x L a b e l , j a v a . l a n g . S t r i n g y L a b e l ,

 f l o a t [] x V a l u e s , f l o a t [] y V a l u e s)

Constructs a new plot window with specified title, labels for x- and y- axis and
adds points with specified (x,y)-coordinates.

v o i d a d d L a b e l (d o u b l e x , d o u b l e y , j a v a . l a n g . S t r i n g l a b e l)

Adds a new label with the specified text at position (x,y).

v o i d a d d P o i n t s (f l o a t [] x , f l o a t [] y , i n t s h a p e)

v o i d a d d P o i n t s (d o u b l e [] x , d o u b l e [] y , i n t s h a p e)

These methods add points with specified (x,y) coordinates to the plot. The number
of points given by the length of the array. The argument shape determines the
shape of a point. Currently only circles are supported, which is specified by passing
the constant PlotWindow.CIRCLE.

Version 1.5 – Sep. 23, 2001

Writing ImageJ PlugIns – A Tutorial 39

v o i d s e t L i m i t s (d o u b l e x M i n , d o u b l e x M a x ,

 d o u b l e y M i n , d o u b l e y M a x)

Sets the limits of the plotting plane.

6.7 Event Handling (Example)

ImageWindow and ImageCanvas are derived from the AWT classes Frame and Canvas and therefore
support event handling. This is especially useful to get user input via mouse and keyboard events.

Event handling in Java AWT is based on interfaces called listeners. There is a listener interface for each
type of event. A class implementing a listener interface is able to react on a certain type of event. The class
can be added to a component’s list of listeners and will be notified when an event that it can handle oc-
curs.

A plugin that has to react on a certain type of event can implement the appropriate interface. It can access
the window of the image it works on and the canvas on which the image is painted. So it can be added as
a listener to these components.

For example, we want to write a plugin that reacts on mouse clicks on the image it works on2.

The listener interfaces are defined in j a v a . a w t . e v e n t, so we import this package.

i m p o r t i j . * ;

i m p o r t i j . p l u g i n . f i l t e r . P l u g I n F i l t e r ;

i m p o r t i j . p r o c e s s . * ;

i m p o r t i j . g u i . * ;

i m p o r t j a v a . a w t . e v e n t . * ;

We have to access the image and the canvas in more than one method, so we declare them as instance
variables:

I m a g e P l u s i m g ;

I m a g e C a n v a s c a n v a s ;

The plugin has to implement the appropriate Interface:

p u b l i c c l a s s M o u s e _ L i s t e n e r i m p l e m e n t s P l u g I n F i l t e r , M o u s e L i s t e n e r {

. . .

In the setup method we have access to the ImagePlus so we save it in our instance variable. We also set
the plugin’s capabilities.

p u b l i c i n t s e t u p (S t r i n g a r g , I m a g e P l u s i m g) {

t h i s . i m g = i m g ;

r e t u r n D O E S _ A L L + N O _ C H A N G E S ;

}

In the run method we get the ImageWindow that displays the image and the canvas on which it is drawn.
We want the plugin to be notified when the user clicks on the canvas so we add the plugin to the canvas’
MouseListeners.

p u b l i c v o i d r u n (I m a g e P r o c e s s o r i p) {

I m a g e W i n d o w w i n = i m g . g e t W i n d o w () ;

c a n v a s = w i n . g e t C a n v a s () ;

c a n v a s . a d d M o u s e L i s t e n e r (t h i s) ; }

2 This example is the Mouse_Listener plugin by Wayne Rasband available on the ImageJ plugins page.

Version 1.5 – Sep. 23, 2001

Writing ImageJ PlugIns – A Tutorial 40

To implement the interface we have to implement the five methods it declares. We only want to react on
clicks so we can leave the others empty. We get the coordinates of the point of the mouse click from the
event object that is passed to the method. The image could be scaled in the window so we use the o f f -
S c r e e n X () and o f f S c r e e n Y () method of ImageCanvas to receive the true coordinates.

p u b l i c v o i d m o u s e C l i c k e d (M o u s e E v e n t e) {

i n t x = e . g e t X () ;

i n t y = e . g e t Y () ;

i n t o f f s c r e e n X = c a n v a s . o f f S c r e e n X (x) ;

i n t o f f s c r e e n Y = c a n v a s . o f f S c r e e n Y (y) ;

I J . w r i t e (" m o u s e P r e s s e d : " + o f f s c r e e n X + " , " + o f f s c r e e n Y) ;

}

p u b l i c v o i d m o u s e P r e s s e d (M o u s e E v e n t e) { }

p u b l i c v o i d m o u s e R e l e a s e d (M o u s e E v e n t e) { }

p u b l i c v o i d m o u s e E n t e r e d (M o u s e E v e n t e) { }

p u b l i c v o i d m o u s e E x i t e d (M o u s e E v e n t e) { }

A more advanced mouse listener (avoiding assigning the listener to the same image twice) and a similar
example that reacts on keyboard events can be found at the ImageJ plugins page.

Like mouse and key listeners a plugin can implement any event listener, e.g. a mouse motion listener. For
adding a mouse motion listener the following changes of the mouse listener plugin are necessary:

The class has to implement the event listener interface:

p u b l i c c l a s s M o u s e _ L i s t e n e r i m p l e m e n t s P l u g I n F i l t e r , M o u s e L i s t e n e r ,
M o u s e M o t i o n L i s t e n e r {

In the setup method, we add the plugin as listener to the image canvas.

c a n v a s . a d d M o u s e M o t i o n L i s t e n e r (t h i s) ;

Of course we have to implement the methods defined in the interface:

p u b l i c v o i d m o u s e D r a g g e d (M o u s e E v e n t e) {

I J . w r i t e (" m o u s e d r a g g e d : " + e . g e t X () + " , " + e . g e t Y ()) ;

}

p u b l i c v o i d m o u s e M o v e d (M o u s e E v e n t e) {

I J . w r i t e (" m o u s e m o v e d : " + e . g e t X () + " , " + e . g e t Y ()) ;

}

For details about listener interfaces, their methods and the events passed please see the Java AWT docu-
mentation.

Version 1.5 – Sep. 23, 2001

Writing ImageJ PlugIns – A Tutorial 41

7 Advanced Topics

7.1 Data Import/Export

7.1.1 Movies

Because of its capability to handle image stacks ImageJ can be used to process movies. Import and export
from and to common movie formats is possible.

QuickTime import and export plugins are available on the ImageJ plugins page. They are based on Ap-
ple’s QuickTime for Java library. To use these plugins, QuickTime for Java has to be installed (which
should be the case on MacOS 9.04 or higher and Mac OS X). On older Macs and under Windows Quick-
Time (available at h t t p : / / w w w . a p p l e . c o m / q u i c k t i m e / d o w n l o a d) has to be installed performing a
custom installation and selecting QuickTime for Java which will install the file Q T J a v a . z i p.

Under Windows Q T J a v a . z i p has to be included in the classpath (- c l a s s p a t h option) of the JVM
used for running ImageJ.

For AVI files, just a writer plugin is available. It does not require any further libraries. To read an AVI file,
convert it to QuickTime (e.g. using QuickTime Pro) or to a TIFF sequence (e.g. using IrfanView under
Windows).

For all movie plugins it is recommended to increase the amount of available memory of the JVM used for
running ImageJ.

7.2 Using the ImageJ Library outside ImageJ

The ImageJ classes form an image processing library which can be used in other Java applications and
applets and also server side in servlets or Java Server Pages. The following section outlines the use of the
ImageJ library in such projects.

7.2.1 Why use the ImageJ library in your Java project?

�� Java 1.1: Java 2 introduced many improvements concerning image processing with Java. But most
users still use browsers that only have a Java 1.1 virtual machine and only a minority uses Sun’s Java
plugin. Java 2 support may also be not available on less widespread platforms. ImageJ is based on Java
1.1 and therefore a good choice especially for applets.

�� ImagePlus as internal image format. You will probably need an internal image representation for-
mat for your application. It is convenient to use ImagePlus and ImageProcessor for this purpose, as a
lot of basic functionality (reading/writing pixel values, scaling, etc.) is already available.

�� Plugins. If you decide to use ImagePlus as your internal image format you can also use all plugins
from the ImageJ distribution as well as all other ImageJ plugins.

�� File I/ O. You can use the ImageJ file input/output plugins for reading and writing files in a variety
of formats.

Of course there are some other useful Java based imaging toolkits and libraries besides ImageJ. The Im-
ageJ links page at h t t p : / / r s b . i n f o . n i h . g o v / i j / l i n k s . ht m l lists some of them.

7.2.2 Applications and Applets

To use the ImageJ library in your Java application, just import the necessary ImageJ packages (e.g. i m -
p o r t i j . p r o c e s s . *) in your classes. To compile and run your application you have to add i j . j a r (if

Version 1.5 – Sep. 23, 2001

Writing ImageJ PlugIns – A Tutorial 42

it’s not in the application directory you also have to specify the path) to the classpath. In an application,
you could also use dynamic class loading as it is implemented in ImageJ for accessing user plugins.

Using the ImageJ library in an applet is quite similar: include the import statement in your classes and add
i j . j a r to the classpath for compiling the applet. The Java 1.1 security model requires all libraries used
by the applet to be located on the same host and you have to include i j . j a r in the archive list of the
applet.

Assume your applet’s code is located in m y a p p l e t . j a r, the applet class is M y A p p l e t . c l a s s, it uses
the ImageJ library and both JAR files are located in the same directory as the HTML file that embeds the
applet. The applet tag in the HTML page would look like

< A P P L E T C O D E = " M y A p p l e t . c l a s s " A R C H I V E = " m y a p p l e t . j a r , i j . j a r "

 W I D T H = ” 4 0 0 ” H E I G H T = ” 4 0 0 ” >

< / A P P L E T >

7.2.3 Servlets and JSP

Web applications often require modifying or generating images on the fly, e.g. stock charts. In Java based
server side solutions the ImageJ library can be used for image processing very easily. When you are using
servlets, just add the appropriate i m p o r t statement for an ImageJ package to your servlet and include
i j . j a r in the classpath. In JSP applications, ImageJ can either be used “behind the curtain” inside Java
Beans (where you just import it as in any other kind of Java class) or directly in a JSP page using e.g.

< % @ p a g e i m p o r t = " i j . p r o c e s s . * " % >

As display format you only have the choice between JPEG, GIF or PNG3. The output will not be written
to a file but to the response stream of the servlet/JSP. You could modify ImageJ’s file encoders for this
purpose or use e.g. Sun’s JPEG encoder. The following servlet sample code illustrates how to load a file
(in any format that can be read by ImageJ) and send it as a JPEG stream to the user’s browser. The name
of the image will be specified as parameter i m a g e of a get request. A call of the servlet could look like

h t t p : / / w w w . m y s e r v e r . c o m / s e r v l e t / S h o w I m a g e ? i m a g e = / i m a g e s / p i c t u r e . t i f

We assume in this example that the image loaded is a RGB color image. Here is the complete code (re-
quires Java 2):

First we import the servlet packages, the AWT image subpackage, the required ImageJ packages and the
Sun JPEG encoder:

i m p o r t j a v a x . s e r v l e t . * ;

i m p o r t j a v a x . s e r v l e t . h t t p . * ;

i m p o r t j a v a . i o . * ;

i m p o r t j a v a . a w t . i m a g e . * ;

i m p o r t i j . * ;

i m p o r t i j . i o . * ;

i m p o r t i j . p r o c e s s . * ;

i m p o r t c o m . s u n . i m a g e . c o d e c . j p e g . * ;

p u b l i c c l a s s S h o w I m a g e e x t e n d s H t t p S e r v l e t

We implement the method for handling a GET request, which gets the HTTP request and response as
parameters. First we read the parameter containing the image URL form the request and open the ImageJ
using ImageJ’s O p e n e r. As we assumed to open a color image, we can now get its C o l o r P r o c e s s o r,
create a new B u f f e r e d I m a g e and store the image’s pixel array in it.

3 ImageJ can read PNG images when it is run under a Java 2 virtual machine.

Version 1.5 – Sep. 23, 2001

Writing ImageJ PlugIns – A Tutorial 43

 p u b l i c v o i d d o G e t (H t t p S e r v l e t R e q u e s t r e q u e s t ,

 H t t p S e r v l e t R e s p o n s e r e s p o n s e)

 t h r o w s S e r v l e t E x c e p t i o n , I O E x c e p t i o n

 {

 S t r i n g i n p u t U R L = r e q u e s t . g e t P a r a m e t e r (" i m a g e ") ;

 O p e n e r o p e n e r = n e w O p e n e r () ;

 I m a g e P l u s i m a g e = o p e n e r . o p e n U R L (i n p u t U R L) ;

 C o l o r P r o c e s s o r c p = (C o l o r P r o c e s s o r) i m a g e . g e t P r o c e s s o r () ;

 i n t [] p i x e l s = (i n t []) c p . g e t P i x e l s () ;

 B u f f e r e d I m a g e b i m g = n e w B u f f e r e d I m a g e (c p . g e t W i d t h () ,

 c p . g e t H e i g h t () , B u f f e r e d I m a g e . T Y P E _ I N T _ R G B) ;

 b i m g . s e t R G B (0 , 0 , c p . g e t W i d t h () , c p . g e t H e i g h t () ,

 p i x e l s , 0 , c p . g e t W i d t h ()) ;

As we want to return a JPEG image, we set the appropriate MIME type for the HTTP response. We get
the response’s binary output stream and open a JPEG encoder on it. To get best quality, we disable sub-
sampling and set the JPEG quality parameters to the maximum. Finally we encode the image with the
specified parameters and clean up by flushing and closing the output stream.

 r e s p o n s e . s e t C o n t e n t T y p e (" i m a g e / j p e g ") ;

 O u t p u t S t r e a m o u t s t r = r e s p o n s e . g e t O u t p u t S t r e a m () ;

 J P E G I m a g e E n c o d e r j i e = J P E G C o d e c . c r e a t e J P E G E n c o d e r (o u t s t r) ;

 J P E G E n c o d e P a r a m j e p = j i e . g e t D e f a u l t J P E G E n c o d e P a r a m (b i m g) ;

 j e p . s e t Q u a l i t y (1 . 0 f , f a l s e) ;

 j e p . s e t H o r i z o n t a l S u b s a m p l i n g (0 , 1) ;

 j e p . s e t H o r i z o n t a l S u b s a m p l i n g (1 , 1) ;

 j e p . s e t H o r i z o n t a l S u b s a m p l i n g (2 , 1) ;

 j e p . s e t V e r t i c a l S u b s a m p l i n g (0 , 1) ;

 j e p . s e t V e r t i c a l S u b s a m p l i n g (1 , 1) ;

 j e p . s e t V e r t i c a l S u b s a m p l i n g (2 , 1) ;

 j i e . e n c o d e (b i m g , j e p) ;

 o u t s t r . f l u s h () ;

 o u t s t r . c l o s e () ;

 }

}

A big advantage of JSP is the separation of implementation (which can be wrapped into Java Beans) and
the page layout. A sample that shows how a JSP based image processing system could look like, can be
found at h t t p : / / w w w . f h s - h ag e n b e r g . a c . a t / s t a f f / b u r g e r / I m a g e J / t u t o r i a l. It consists of
a Java Bean that wraps the whole ImageJ functionality and also supports dynamic loading of user plugins
(although plugins may not require user input except for the argument string).

Version 1.5 – Sep. 23, 2001

Writing ImageJ PlugIns – A Tutorial 44

8 Troubleshooting

ImageJ runs out of memory4.

 This can be solved by making more memory available to the Java Runtime Environment. As virtual
memory is significantly slower than real RAM, you should try not to assign more than 2/3 of your real
RAM to the Java virtual machine.
Windows: To increase the amount of memory available to ImageJ, edit the -mx option in the "Target:"

field of the of the "Shortcut" properties of the ImageJ shortcut. The default is 80MB. For example, to
increase the available memory from 80MB to 340MB, change the "Target" line to
C : \ I m a g e J \ j r e \ b i n \ j r e w . e x e - m x 3 4 0 m - c l a s s p a t h i j . j a r ; t o o l s 1 1 . j a r
i j . I m a g e J

MacOS: Java applications allocate memory from the System heap so there is usually no need to increase
the value of "Preferred Size" in ImageJ's "Get Info" dialog. Strangely enough, allocating more memory
to ImageJ reduces the amount of memory available for loading images! It may, however, be necessary
to allocate more memory to ImageJ to avoid error messages with plugins that use QuickTime for Java.
The Finder's "About this Computer" window is a good way to monitor ImageJ's memory usage.

Mac OS X: To make more than 80MB of memory available to ImageJ, edit the gc.max property in the
ImageJ.app/Contents/Resources/MRJApp.properties text file, where ImageJ.app is the directory
(bundle) that the Finder displays as the ImageJ application.

Linux, Unix, other OS: You can set the amount of memory available for the Java runtime enviroment by
using the – m x switch followed by the amount of memory. For example, to make 256MB available for
the JVM, call it using:
. / j r e / b i n / j r e - m x 2 5 6 m - c p i j . j a r : t o o l s . j a r i j . I m a g e J
If you want to use this setting all the time, make the modification in the run script.

A plugin is not displayed in ImageJ’s plugins menu.

This may have several reasons:
�� The plugins name does not contain an underscore.
�� The plugin may not be in the plugin directory or one of its subdirectories.
�� If you did not compile the plugin inside ImageJ, make sure that the compilation was successful and a

class file has been created.

When you call the Plugins/Compile and Run ... menu, you get the message: “This JVM appears not to include the javac
compiler. [...]”

If you are using Mac OS, you need the MRJ SDK in addition to the MRJ (Macintosh Runtime for Java).
Consult section 1.3.2 for further reference.
If you experience this problem when using the Windows or Linux distribution including a Java compiler,
make sure
�� that the tools library (t o o l s 1 1 . j a r if you are using JRE/JDK 1.1, t o o l s . j a r if you are using Java

2 (JRE/JDK 1.2 or higher)).
�� that you are using the right Java environment if you have more than one installed. Specify the path to

the Java Virtual Machine you want to use explicitly.

4 The operating system specific solutions described here can be found in detail at
h t t p : / / r s b . i n f o . n i h . g o v / i j / d o c s / i n s t a l l

Version 1.5 – Sep. 23, 2001

Writing ImageJ PlugIns – A Tutorial 45

9 Frequently Asked Questions

How to change the URL for the sample images (menu File / Open Samples) in order to access local copies of the files?

The URL is set using the i m a g e s . l o c a t i o n value in the file I J _ P r o p s . t x t which is located in
i j . j a r . The URL must include a trailing /.

You can edit i j . j a r with a program that reads ZIP files. Some of them (e.g. WinZip) support editing a
file from the archive directly and will update the archive after closing the modified file. Otherwise it is
necessary to extract I J _ P r o p s . t x t from the archive and add it again after editing.

Example:

i m a g e s . l o c a t i o n = h t t p : / / w w w . m y m i r r o r . c o m / i j / i m a g e s /

How to include user plugins when running ImageJ as applet?

When running ImageJ as applet, the class loader that loads user plugins will not work as the plugins folder
is not in the code base. Add a package statement such as p a c k a g e i j . p l u g i n s ; to the plugin code
and insert the compiled class into i j . j a r (be sure to include it into the right folder). To make the plugin
appear in the plugins menu add a line like p l u g - i n 0 8 = " P l u g i n " , i j . p l u g i n . P l ug i n _ to the
plugins section in I J _ P r o p s . t x t which is also located in i j . j a r .

You can edit i j . j a r with a program that reads ZIP files. Some of them (e.g. WinZip) support editing a
file from the archive directly and will update the archive after closing the modified file. Otherwise it is
necessary to extract I J _ P r o p s . t x t from the archive and add it again after editing.

Version 1.5 – Sep. 23, 2001

Writing ImageJ PlugIns – A Tutorial 46

10 Further Resources

10.1 API Documentation, Source Code

The ImageJ API documentation is available online at
h t t p : / / r s b . i n f o . n i h . g o v / i j / d o c s / a p i / i n d e x . h t m l.

API documentation and source code are available for download at
h t t p : / / r s b . i n f o . n i h . g o v / i j / d o w n l o a d . h t m l.

10.2 Plugins Page

Many ImageJ plugins (with source code) are available at
h t t p : / / r s b . i n f o . n i h . g o v / i j / p l u g i n s / i n d e x . h t m l.

10.3 ImageJ Mailing List

For questions concerning ImageJ that are not answered by the documentation consult the ImageJ mailing
list.

A complete archive can be found at h t t p : / / l i s t . n i h . g o v / a r c h i v e s / i m a g e j . h t m l

For information about subscribing see h t t p : / / r s b . i n f o . n i h . g o v / i j / l i s t . h t m l

10.4 Java Resources

Online Resources

Java API documentation and many tutorials are available from Sun Microsystems at
h t t p : / / j a v a . s u n . c o m / under “Docs & Training”. Other online Java resources are:

�� Exploring Java h t t p : / / w w w . o o i . c o m / e x p l o r i n g j a v a /

�� Java Programmer's FAQ h t t p : / / w w w . a f u . c o m /

�� O'Reilly Java Center h t t p : / / j a v a . o r e i l l y . c o m /

�� JavaWorld h t t p : / / w w w . j a v a w o r l d . c o m /

�� DocJava h t t p : / / w w w . D o c J a v a . c o m /

�� Java Developers Journal h t t p : / / w w w . s y s - c o n . c o m / j a v a /

�� JARS h t t p : / / w w w . j a r s . c o m / j a r s _ r e s o u r c e s _ j a v a . h t m l

A comprehensive collection of Java resources (books, tutorials, FAQs, tools) can be found at
h t t p : / / w w w . a p l . j h u . e d u / ~ h a l l / j a v a.

Books

Java in a Nutshell: A Desktop Quick Reference (Java Series)
by David Flanagan
648 pages 3rd edition (November 1999)
O'Reilly & Associates
ISBN: 1565924878

Version 1.5 – Sep. 23, 2001

Writing ImageJ PlugIns – A Tutorial 47

Java Examples in a Nutshell
by David Flanagan
500 pages 2nd edition (September 2000)
O'Reilly & Associates
ISBN: 0596000391
The first third of this book is interesting for someone who wants to get into Java programming,
the other chapters cover more advanced topics.

The Sun Java Series
Detailed information can be found at h t t p : / / j a v a . s u n . c o m / d o c s /b o o k s /

